准备工作:安装与配置
-
安装必要的库
使用pip安装Selenium库:pip install selenium
同时,我们通常也会使用
BeautifulSoup
或lxml
来解析HTML,以及pandas
等库来保存数据,你可以按需安装:pip install beautifulsoup4 pandas
-
下载浏览器驱动
Selenium需要一个浏览器驱动来操作浏览器。以Chrome为例:-
查看你的Chrome浏览器版本(在浏览器地址输入
chrome://version/
)。 -
从 ChromeDriver官网 或 国内镜像 下载对应版本的ChromeDriver。
-
将下载的
chromedriver
executable文件放在一个指定目录,并记住路径(如/path/to/chromedriver
)。或者,你可以将其添加到系统环境变量PATH
中,这样在代码中就不需要指定路径了。
-
💡 核心步骤与代码示例
下面是一个使用Selenium爬取马蜂窝旅游攻略的基本步骤和代码框架。
步骤 1: 导入库并启动浏览器
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException, NoSuchElementException
import time
import pandas as pd
# 指定ChromeDriver路径(如果没添加到PATH)
driver = webdriver.Chrome(executable_path='/path/to/your/chromedriver') # 对于旧版本Selenium
# 如果Selenium版本较新(>=4.11.2),且ChromeDriver已在PATH中,可以简写为:
# driver = webdriver.Chrome()
# 如果需要无头模式(不打开浏览器界面)、设置用户代理等,可以添加选项:
from selenium.webdriver.chrome.options import Options
chrome_options = Options()
chrome_options.add_argument('--headless') # 无头模式,可选
chrome_options.add_argument('--disable-gpu')
chrome_options.add_argument('--user-agent=Your_Custom_User_Agent_String') # 设置User-Agent,可选
# 然后使用 options 启动:
# driver = webdriver.Chrome(options=chrome_options)
-
无头模式 (Headless Mode): 在后台运行浏览器,不显示图形界面,节省资源8。
-
User-Agent: 模拟真实浏览器的请求头,有助于规避一些反爬措施2。
步骤 2: 打开目标页面并等待元素加载
现代网页大量使用Ajax动态加载内容,直接获取页面源码可能无法得到完整数据。必须使用等待机制。
# 目标URL(以马蜂窝某地攻略列表页为例)
url = 'https://www.mafengwo.cn/mdd/'
driver.get(url) # 导航到页面
# 显式等待 - 等待某个关键元素加载完成(例如攻略列表的容器)
try:
# 设置等待超时时间,例如10秒
wait = WebDriverWait(driver, 10)
# 假设攻略列表项的父容器class是 '.post-list'
element_present = EC.presence_of_element_located((By.CSS_SELECTOR, '.post-list'))
wait.until(element_present)
print("页面主要元素加载完成")
except TimeoutException:
print("等待元素超时!")
driver.quit()
# 可以进行错误处理或退出
# 隐式等待(可选,但不推荐与显式等待混用)
# driver.implicitly_wait(10) # 在查找任何元素时,如果未立即找到,会等待最多10秒
关键点:
-
显式等待 (WebDriverWait): 针对特定条件进行等待,更灵活可靠,推荐使用3。
-
隐式等待 (implicitly_wait): 设置一个全局的等待时间,对所有
find_element
操作生效。
步骤 3: 定位元素并提取数据
一旦页面加载完成,你就可以查找所需的元素并提取信息了。
# 假设我们已经成功等待到了列表页的加载
# 查找所有攻略项(根据实际网页结构调整选择器)
strategy_items = driver.find_elements(By.CSS_SELECTOR, '.post-item') # 使用CSS选择器定位,返回WebElement列表
# 也可以用By.CLASS_NAME, By.XPATH等,例如:
# strategy_items = driver.find_elements(By.XPATH, '//div[@class="post-item"]')
data_list = [] # 用于存储提取的数据
for item in strategy_items:
try:
# 在单个攻略项WebElement中继续查找元素
title_elem = item.find_element(By.CSS_SELECTOR, 'h2 a') # 查找标题链接
title = title_elem.text
link = title_elem.get_attribute('href')
# 查找作者(假设class为author)
author_elem = item.find_element(By.CLASS_NAME, 'author')
author = author_elem.text
# 查找浏览量/评论数等(需要查看实际网页结构)
# view_count = item.find_element(By.CLASS_NAME, 'view-count').text
print(f"标题: {title}, 链接: {link}, 作者: {author}")
data_list.append({'标题': title, '链接': link, '作者': author})
except NoSuchElementException as e:
# 如果某个元素在某些项中找不到,跳过此项或记录错误
print(f"在项中找不到元素: {e}")
continue
# 如果数据量大或需要分页,通常需要处理翻页
# 查找"下一页"按钮并点击,然后循环上述过程
try:
next_page_button = driver.find_element(By.CSS_SELECTOR, '.pg-next') # 下一页按钮的选择器
if next_page_button.is_enabled():
next_page_button.click()
# 点击后需要再次等待新页面加载!
# time.sleep(2) # 简单等待,但不推荐
# 最好再次使用WebDriverWait等待新列表出现
# 然后再次执行提取数据的循环
except NoSuchElementException:
print("已是最后一页或找不到下一页按钮")
定位元素常用方法:
定位方式 | 示例代码 | 说明 |
---|---|---|
By.ID | driver.find_element(By.ID, "su") | 通过元素的id属性定位 |
By.NAME | driver.find_element(By.NAME, "wd") | 通过元素的name属性定位 |
By.CLASS_NAME | driver.find_element(By.CLASS_NAME, "className") | 通过元素的class属性定位 |
By.TAG_NAME | driver.find_element(By.TAG_NAME, "div") | 通过元素的标签名定位 |
By.LINK_TEXT | driver.find_element(By.LINK_TEXT, "地图") | 通过链接的完整文本定位 |
By.PARTIAL_LINK_TEXT | driver.find_element(By.PARTIAL_LINK_TEXT, "地") | 通过链接的部分文本定位 |
By.CSS_SELECTOR | driver.find_element(By.CSS_SELECTOR, "#id .class > a") | 常用,通过CSS选择器定位 |
By.XPATH | driver.find_element(By.XPATH, "//div[@id='id']//a[@class='class']") | 强大常用,通过XPath表达式定位5 |
步骤 4: 处理动态内容(滚动、Ajax等)
有些内容可能在滚动页面后才加载。
# 模拟滚动到页面底部(加载更多内容)
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
# 滚动后需要等待新内容加载
time.sleep(2) # 简单处理,理想情况下应用WebDriverWait
# 或者滚动到特定元素
element = driver.find_element(By.ID, "some-element")
driver.execute_script("arguments[0].scrollIntoView();", element)
步骤 5: 数据存储与浏览器退出
提取完数据后,将其保存并关闭浏览器。
# 将数据保存为DataFrame并写入CSV文件:cite[10]
if data_list:
df = pd.DataFrame(data_list)
df.to_csv('mafengwo_strategies.csv', index=False, encoding='utf-8-sig') # utf-8-sig避免中文乱码
print("数据已保存到 mafengwo_strategies.csv")
# 关闭浏览器
driver.quit()
⚠️ 重要注意事项
-
反爬虫机制2:
-
User-Agent: 设置真实的User-Agent。
-
行为模式: 避免过快过频的请求,在操作间添加随机延时(
time.sleep(random.uniform(1, 3))
)。 -
代理IP: 如果IP被限制,可以考虑使用代理池。
-
验证码: 如果遇到验证码,可能需要人工处理或使用专门的识别服务。
-
登录状态: 如需爬取登录后内容,可用Selenium模拟登录并保存Cookies。
-
-
网页结构变化: 网站前端更新可能导致你的选择器失效,需要定期维护代码。
-
法律与道德规范8:
-
遵守
robots.txt
: 查看马蜂窝的robots.txt
文件(通常是https://www.mafengwo.cn/robots.txt
),尊重网站不允许爬取的目录。 -
合理使用: 爬取数据用于个人学习或研究,不要用于商业用途或对网站造成过大负载。
-
尊重版权: 注意数据的版权问题。
-
-
性能优化: 对于大规模爬取,考虑使用Scrapy+Selenium的组合1,或者异步等更高效的方式。
💎 更完整的代码片段
这是一个整合了上述部分要点的、针对马蜂窝攻略列表页的更完整示例代码框架(请注意: 实际网页结构可能已变化,CSS选择器#container > div:nth-child(6) > div > div.poi-list > ul > li
需要你根据实际情况通过浏览器开发者工具检查并修改!):
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException, NoSuchElementException
import time
import pandas as pd
from selenium.webdriver.chrome.options import Options
def crawl_mafengwo_strategies():
# 设置Chrome选项(可选)
chrome_options = Options()
# chrome_options.add_argument('--headless') # 开启无头模式
# chrome_options.add_argument('--disable-blink-features=AutomationControlled')
# chrome_options.add_experimental_option("excludeSwitches", ["enable-automation"])
# chrome_options.add_experimental_option('useAutomationExtension', False)
# 启动浏览器
driver = webdriver.Chrome(options=chrome_options)
# driver.execute_script("Object.defineProperty(navigator, 'webdriver', {get: () => undefined})")
wait = WebDriverWait(driver, 10)
all_data = []
base_url = "https://www.mafengwo.cn/mdd/"
try:
driver.get(base_url)
# 等待页面加载
wait.until(EC.presence_of_element_located((By.CSS_SELECTOR, ".hot-list")))
# 模拟滚动
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(2)
# 查找热门城市/目的地(示例选择器,需调整)
destinations = driver.find_elements(By.CSS_SELECTOR, ".hot-list .item")
for dest in destinations:
try:
name_elem = dest.find_element(By.TAG_NAME, "a")
dest_name = name_elem.text
dest_link = name_elem.get_attribute('href')
print(f"目的地: {dest_name}, 链接: {dest_link}")
all_data.append({"目的地": dest_name, "链接": dest_link})
except NoSuchElementException:
continue
# 处理分页(如果存在)
# next_page_selector = '.pg-next' # 示例选择器
# page_num = 1
# max_pages = 3 # 限制爬取页数
# while page_num < max_pages:
# try:
# next_btn = driver.find_element(By.CSS_SELECTOR, next_page_selector)
# if 'disabled' in next_btn.get_attribute('class'):
# break
# next_btn.click()
# wait.until(EC.staleness_of(destinations[0])) # 等待旧元素失效
# # 重新获取列表
# destinations = driver.find_elements(By.CSS_SELECTOR, ".hot-list .item")
# # ... 提取新页数据 ...
# page_num += 1
# time.sleep(1)
# except (NoSuchElementException, TimeoutException):
# break
except Exception as e:
print(f"爬取过程中发生错误: {e}")
finally:
driver.quit() # 确保浏览器最终被关闭
# 保存数据
if all_data:
df = pd.DataFrame(all_data)
df.to_csv('mafengwo_destinations.csv', index=False, encoding='utf-8-sig')
print(f"成功爬取 {len(all_data)} 条数据并已保存。")
else:
print("未爬取到数据。")
if __name__ == "__main__":
crawl_mafengwo_strategies()
最重要的一步:使用浏览器的开发者工具(F12) 仔细检查马蜂窝网站的实际HTML结构,并据此更新代码中的元素选择器(如CSS选择器、XPath)。这是Selenium爬虫成功的关键。