1.5无穷大量【极限】

无穷大不仅是数学中的概念,也在计算机科学中扮演关键角色。算法设计关注随着问题规模N增大时,计算量如何随N的高阶无穷大增长。良好的算法能在无穷大中找到较小的无穷大,确保计算效率。例如,算法的计算量与N的一次、二次、三次或指数函数的关系,展示了不同增长率。理解无穷大有助于我们在生活中面对几何级数增长的问题时,作出更好的决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.5无穷大量【极限】

1.5.1引言

上一节学习了无穷小,我们已经知道无穷小是极限值为 000 的数列或函数。同样的道理,无穷大也不是具体的数字,而是数列或者函数的增长趋势,是动态的。数列或者函数互相比较,有些增加更快,有些则相对慢一点。如果两个无穷大,一个增加的速率比另一个更大,我们就说前面的相比后面的是高阶的。

在计算机科学领域,对于无穷大的研究是一个至关重要的问题。计算机是一个计算速度极快的机器。对于小规模的问题,无论怎么计算,也花不了多少时间。计算机被发明出来就是为了解决大规模的计算问题,用计算机解决这些大规模问题的具体计算方法称为算法。计算机算法所关心的事情,是当计算规模很大时,不同的算法的计算量以什么速度增长。比如,我们把问题的规模想成是 NN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少侠PSY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值