给定一个字符串数组,将字母异位词组合在一起。字母异位词指字母相同,但排列不同的字符串。
示例:
输入: ["eat", "tea", "tan", "ate", "nat", "bat"]
输出:
[
["ate","eat","tea"],
["nat","tan"],
["bat"]
]
说明:
所有输入均为小写字母。
不考虑答案输出的顺序。
基本思路:将不同的异位词组合在一起,显然是需要使用哈希表,但是key应该是什么?
- 思路1:排好序的字符串
- 思路2:统计各个字符出现的次数,标记为特殊形式,比如acbc表示为“1#1#2#”,或者表示为“abcc”,类似与排序,但是时间复杂度为O(n);
- 思路3:利用算数基本定理,使用质数表示各个字符,然后相乘,异位词的乘积必然相等,不是异位词的乘积必然不相等
思路2:哈希表,表现形式位“abccc"
void check(unordered_map<string,vector<string>> &dict,string &str){
int alp[26]={};
for(auto ch:str){
alp[ch-'a']++;
}
string str_stan="";
for(int i=0;i<26;i++){
for(int j=0;j<alp[i];j++)
str_stan+=char(i+'a');
}
if(dict.count(str_stan)==0){
vector<string> temp={};
temp.push_back(str);
dict[str_stan]=temp;
}
else{
dict[str_stan].push_back(str);
}
}
vector<vector<string>> groupAnagrams(vector<string>& strs) {
unordered_map<string,vector<string>> dict;
vector<vector<string>> ans;
for(auto str:strs){
check(dict,str);
}
for(auto &it:dict){
ans.push_back(it.second);
}
return ans;
}
思路3:将异位词映射到质数相乘
算术基本定理,又称为正整数的唯一分解定理,即:每个大于1的自然数,要么本身就是质数,要么可以写为2个以上的质数的积,而且这些质因子按大小排列之后,写法仅有一种方式。
vector<vector<string>> groupAnagrams(vector<string>& strs) {
unordered_map<double,vector<string>> dict;
int alp[26]={2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103};
vector<vector<string>> ans;
for(auto str:strs){
double t=1;
for(auto ch:str){
t*=alp[ch-'a'];
}
dict[t].push_back(str);
}
for(auto &it:dict){
ans.push_back(it.second);
}
return ans;
}