Python- ocr识别模型(MNN模型)预测

import MNN
import cv2
import numpy as np
import time

def normlize_with_pad(img, width, height, ratio):
    h, w = img.shape[:2]  # 长边缩放为min_side
    
    if h / w > height / width * ratio:
        val = int(img[-1,-1])
        try:
            img = cv2.resize(img, (int(ratio * height * w // h), height))
            img = cv2.copyMakeBorder(img, 0, 0, 0, (width - int(ratio * height * w // h)),
                                     cv2.BORDER_CONSTANT, value=[0, 0, 0])
        except Exception as e:
            print('error image shape {} {}'.format(h, w))
    img = cv2.resize(img, (width, height))
    return img

def process(image_data, size):
    image_resize = normlize_with_pad(image_data, size[1],size[0], 1)
    input_data = np.array(image_resize)
    # input_data = np.ascontiguousarray(input_data)
    input_data = input_data.astype(np.float32)
    input_data = input_data / 255
    input_data = np.expand_dims(input_data, 0)
    input_data = np.expand_dims(input_data, 0)
    return input_data

def decode_out(str_index,logit, characters):
    char_list = []
    char_logit = []
    for i in range(len(str_index)):
        if str_index[i] != 0 and (not (i > 0 and str_index[i - 1] == str_index[i])):
            char_list.append(characters[str_index[i]-1])
            char_logit.append(logit[i].numpy())
    # char_l=1
    # for charl in char_logit:
    #     char_l*=charl
    # # print(char_l)
    # if not type(char_l)==int:
    #     char_l=char_l.numpy()
    #     if char_l.ndim>0:
    #         char_l=char_l[0]
    # print(char_logit)
    char_l=np.mean(char_logit)
    return ''.join(char_list),char_l




if __name__ == "__main__":
    import torch
    model_path = 'densenet_rnn.mnn'
    # image_path = '61c785d7180e455aa6a7f892a44b733f_0_1713158555.jpg'
    image_path='OCRAExtended/0.jpg'
    resize = (32, 320)
    # characters= '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz[!"#$%&()*+.,/:;<=>?@\\^-_`{|}~]'
    characters= '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz/:-'
    # characters= '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'

    t1 = time.time()
    # (1) load model
    net = MNN.nn.load_module_from_file(model_path,  ["images"], ["outputs"])
    # net = MNN.nn.load_module_from_file(model_path,  ["Input:0"], ["model/swin_tiny_patch4_window7_224/out/truediv:0"])
    
    # preprocess
    print(image_path)
    image_data = cv2.imread(image_path,0)
    input_data = process(image_data, resize)
  
    # (2) 构建一个Var类型的占位符来保存numpy,placeholder(shape, format, dtype)
    # print(input_data.shape) #(1, 1, 320, 32)
    input_var = MNN.expr.placeholder(input_data.shape, MNN.expr.NCHW)
    input_var.write(input_data)
    # (3) cv2 read shape is NHWC, Module's need is NC4HW4, convert it
    input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
    # print(input_var.shape)
    # (4) inference
    output_var = net.forward(input_var)
    # print(output_var.shape) #[1, 160, 37]
    # (5) the output from net may be NC4HW4, turn to linear layout
    # output_var = MNN.expr.convert(output_var, MNN.expr.NCHW)
    # print(output_var.shape)
    output_var = output_var.read()
    output_var = torch.tensor(output_var)
    # print(output_var.shape) #(80, 1, 66) #torch.Size([1, 160, 77])
    logit, preds = output_var.max(2)
    logit = torch.exp(logit)
    preds = preds.transpose(1, 0).contiguous().view(-1)
    # print(preds)
    lab2str,char_logit = decode_out(preds,logit,characters )
    # lab2str,char_logit = decode_out(preds,logit[0],characters )
    print(lab2str,char_logit)
    t2 = time.time()



# ./MNNConvert -f ONNX --modelFile "kang-slim.onnx" --MNNModel "kang-slim.mnn" --bizCode MNN

参考文章:Ubuntu18.04上MNN编译与使用(Python版)_mnn使用python cpu推理 demo-CSDN博客

### 深度学习在OCR中的应用及其实现 #### 1. 深度学习OCR的核心概念 深度学习显著提升了OCR的技术水平,尤其是在处理复杂图像和不规则形状文本方面表现出色。相比传统方法依赖手工设计特征提取器,深度学习模型可以通过大量标注数据自动学习特征表示[^1]。 #### 2. 常见的深度学习OCR模型框架 以下是几种主流的深度学习OCR模型及其特点: - **Donut**: Donut是一个端到端的文档图像理解模型,适用于多种任务,包括但不限于OCR。该模型可以直接从输入图像生成结构化输出,无需经过中间的传统OCR步骤。这种特性使其非常适合处理带有复杂布局的文档,例如表格、表单等[^2]。 - **MGP-STR (Multi-Grained Prediction for Scene Text Recognition)**: 这一模型专注于场景文字识别任务,采用多粒度预测机制来提升字符识别精度。其优势在于能够在不同尺度下捕捉文本信息,从而提高整体性能。 - **CRNN (Convolutional Recurrent Neural Network)**: CRNN 结合卷积神经网络(CNN)与循环神经网络(RNN),先利用CNN提取图像特征,再由RNN序列建模完成最终的文字识别工作。此架构广泛应用于自然场景下的短文本串读取任务中[^3]。 #### 3. 数据集的选择 构建高效的OCR系统离不开高质量的数据支持,在实际项目开发过程中可选用如下公开可用的数据资源作为训练基础: - ICDAR系列竞赛提供的各类手写体/印刷字体样本; - SynthText合成数据集——包含数百万张带标签的人工生成图片素材; - Google Fonts Dataset ——覆盖全球主要语言书写的矢量字形文件集合; #### 4. 推理加速技巧 尽管现代OCR解决方案已经取得了巨大进步,但在某些高性能需求环境下仍需进一步优化运行效率。针对这一挑战,业界提出了若干有效的策略建议: - 使用轻量化版本的基础骨干网路代替原始的大规模参数配置; - 部署专门面向移动端设备调优后的推理引擎比如TFLite, ONNX Runtime Mobile Edition 或者前述提到过的NCNN/MNN方案; - 对特定硬件平台实施定制化的算子融合操作减少冗余计算开销[^3]。 ```python import torch from torchvision import transforms from PIL import Image def load_model(model_path): model = torch.load(model_path) model.eval() return model transform = transforms.Compose([ transforms.Resize((32, 128)), transforms.ToTensor(), ]) image = Image.open('test_image.png').convert('L') tensor = transform(image).unsqueeze(0) model = load_model('ocr_model.pth') output = model(tensor) print(output.argmax(dim=1)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值