Error-RuntimeError: one of the variables needed for gradient computation has been modified by

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [4, 2, 72, 768]], which is output 0 of AsStridedBackward0, is at version 1; expected version 0 instead. Hint: the backtrace further above shows the operation that failed to compute its gradient. The variable in question was changed in there or anywhere later. Good luck!

翻译一下:

RuntimeError:梯度计算所需的变量之一已被就地操作修改:[torch.cuda.FloatTensor [4, 2, 72, 768]],这是 AsStridedBackward0 的输出 0,版本为 1;预期的版本 0 代替。提示:上面的回溯显示了无法计算其梯度的操作。有问题的变量后来在那里或任何地方都发生了变化。祝你好运!

发现报错位置:

total_loss, loss, loss_prompt, loss_pair = self._train_step(batch, step, epoch)
total_loss.backward()

发现很多地方是修改添加,retain_graph=True,可以让前一次的backward()的梯度保存在buffer内:

# 原始代码
total_loss.backward()
# 修改成:
total_loss.backward(retain_graph=True)

但是还是报相同的错误,只能查看错误位置,添加代码with torch.autograd.detect_anomaly()

with torch.autograd.detect_anomaly():
            total_loss, loss, loss_prompt, loss_pair = self._train_step(batch, step, epoch)
            total_loss.backward()

 运行之后发现出错位置是在这一句

mean_token = x[:, :, -end:, :].mean(1, keepdim=True).expand(-1, num, -1, -1)

出错可能是由于张量的计算在计算图中被修改,导致版本不匹配的错误。我们可以通过重写这段代码,避免潜在的就地操作,并确保计算图的正确性,所以修改成:

# 深拷贝
x = x.clone()
sub_tensor = x[:, :, -end:, :]
# 深拷贝
sub_tensor_clone = sub_tensor.clone()
mean_token = sub_tensor_clone.mean(1, keepdim=True)
mean_token = mean_token.expand(-1, num, -1, -1)

对两个地方进行了拷贝,避免切片操作对原向量的影响,同时仔细检查代码中的所有操作,确保没有任何就地修改 (in-place) 操作,例如使用 .add_().mul_() 等操作符等

### 运行时错误 `RuntimeError` 的原因与解决方案 当遇到 `RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation` 错误时,这通常是因为在 PyTorch 中某些张量被进行了就地(inplace)修改操作[^1]。这种行为会破坏反向传播所需的计算图结构,从而导致梯度无法正确计算。 #### 原因分析 该错误的核心在于某个张量在其生命周期中发生了版本号的变化。PyTorch 使用自动求导机制来跟踪张量的操作历史记录,并通过这些记录构建动态计算图以便于后续的梯度计算。如果在此过程中对张量执行了就地修改操作,则可能导致其状态发生变化而失去原始的历史记录[^2]。具体表现为: - 张量的状态与其预期版本不匹配。 - 反向传播尝试访问已被更改的数据或元数据。 #### 解决方案 以下是几种常见的解决方法: 1. **禁用就地操作** 避免使用任何带有 `_` 后缀的方法(如 `.add_()` 或 `.relu_()`),因为它们会对输入张量进行就地修改。改用返回新对象而非改变原有对象的方式实现相同功能。例如,将以下代码片段中的就地赋值替换为克隆副本后再处理: ```python # 替代前 x[:, :] += y # 替代后 x = x + y ``` 2. **启用异常检测模式** 利用 PyTorch 提供的功能开启异常捕获选项可以帮助定位问题所在位置。设置如下参数即可激活此特性: ```python import torch torch.autograd.set_detect_anomaly(True) ``` 当再次触发相同的错误时,系统将会提供更详细的堆栈信息指出具体的失败点位[^3]。 3. **检查模型定义部分是否存在不当操作** 如果确认问题是来源于自定义神经网络层内部逻辑的话,则需仔细审查每一处涉及可训练权重更新的地方是否有潜在风险引入不必要的副作用。比如下面这个例子展示了如何安全地完成阈值裁剪而不影响其他组件的工作流程: ```python max_list_min = ... input_masked = (input > max_list_min).float() x_cloned = x.clone() # 创建独立拷贝避免污染源数据 x_cloned *= input_masked.unsqueeze(-1) # 应用于复制版上实施变换 ``` 4. **调试工具辅助排查** 结合打印语句或者可视化库进一步探索中间结果变化规律也是很有帮助的办法之一。可以周期性输出目标节点的相关属性验证一致性假设成立与否。 ```python print(f'Gradient Function:{ratio.grad_fn}, Version Number:{ratio._version}') ``` 以上措施综合运用能够有效缓解乃至彻底消除此类棘手状况的发生概率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值