剑指offer——变态跳台阶(2)Python实现

本文详细解析了一道经典的递归算法题目——青蛙跳台阶。通过逐步分析,我们发现该问题可以通过递归的方式解决,最终得到一个简洁的递推公式。文章深入浅出地解释了递归思想在解决此类问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

 

考点:递归链接一

 

分析:f(n)为当为n阶台阶时,有多少种跳法。

  • 当有1个台阶时,只有一种跳法。f(1)=1
  • 当有2个台阶时,有两种跳法,(1,1)或(2)。所以f(2)=f(2-1)+f(2-2)=2,这里f(2-1)为第一次跳一个台阶后,剩下的情况是f(1)了。f(2-2)为一下跳了两个台阶
  • 当有3个台阶时,有(1,1,1)、(1,2)、(2,1)、(3)四种跳法。所以f(3)=f(3-1)+f(3-2)+f(3-3)=4。同理第一次若跳了一个台阶,则剩下情况为f(2),第一次如果跳了两个台阶,则剩下跳的情况为f(1)。
  • 当有4个台阶时,有(1,1,1,1)、(1,2,1)、(1,1,2)、(2,1,1)、(2,2)、(1,3)、(3,1)、(4)。若第一次跳一个台阶则,剩下的跳法为f(3),第一次跳两个台阶则为f(2),所以,f(4)=f(4-1)+f(4-2)+f(4-3)+f(4-4)。
  • 综上,f(n)=f(n-1)+f(n-2)+f(n-3).........f(n-n)。f(n-1)=f(n-2)+f(n-3)+.........f(n-n)
  • 两个式子相减得 f(n)=2f(n-1),当n>=2时。

 

# -*- coding:utf-8 -*-
class Solution:
    def jumpFloorII(self, number):
        # write code here
        if number < 1:
            return -1
        elif number == 1:
            return 1
        else:
            return 2*self.jumpFloorII(number-1)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值