题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
考点:递归链接一。
分析:f(n)为当为n阶台阶时,有多少种跳法。
- 当有1个台阶时,只有一种跳法。f(1)=1
- 当有2个台阶时,有两种跳法,(1,1)或(2)。所以f(2)=f(2-1)+f(2-2)=2,这里f(2-1)为第一次跳一个台阶后,剩下的情况是f(1)了。f(2-2)为一下跳了两个台阶
- 当有3个台阶时,有(1,1,1)、(1,2)、(2,1)、(3)四种跳法。所以f(3)=f(3-1)+f(3-2)+f(3-3)=4。同理第一次若跳了一个台阶,则剩下情况为f(2),第一次如果跳了两个台阶,则剩下跳的情况为f(1)。
- 当有4个台阶时,有(1,1,1,1)、(1,2,1)、(1,1,2)、(2,1,1)、(2,2)、(1,3)、(3,1)、(4)。若第一次跳一个台阶则,剩下的跳法为f(3),第一次跳两个台阶则为f(2),所以,f(4)=f(4-1)+f(4-2)+f(4-3)+f(4-4)。
- 综上,f(n)=f(n-1)+f(n-2)+f(n-3).........f(n-n)。f(n-1)=f(n-2)+f(n-3)+.........f(n-n)
- 两个式子相减得 f(n)=2f(n-1),当n>=2时。
# -*- coding:utf-8 -*-
class Solution:
def jumpFloorII(self, number):
# write code here
if number < 1:
return -1
elif number == 1:
return 1
else:
return 2*self.jumpFloorII(number-1)