
论文
文章平均质量分 92
漂洋过海的油条
用户名忽略哈!
我是一个如花似玉,朝着大神方向努力奋斗的小仙女!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《Mem2Seq:Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented DialogSystems》总结
一、概述近年来端到端的学习方法取得了不错得成绩,已有的RNN 编码-解码模型可以直接将纯文本对话历史映射到输出响应,并且对话状态是潜在的,因此不需要手工标注状态标签。另外RNN编码-解码模型+基于attention的复制机制则可以直接从输入源复制到输出响应端,能够解决在对话历史中没有出现的token,生成正确和相关的实体。但是这些方法仍然存在两个问题:他们努力的想将外部的KB知识整...原创 2018-10-15 21:08:31 · 1274 阅读 · 0 评论 -
论文解析《Sequicity:Simplifying .........》
本文主要解析的是这篇论文《Sequicity:Simplifying Task-oriented Dialogue Systems with Single Sequence-to-Sequence Architectures》 一、概述论文提出了一个名为 Sequicity 的框架,可将任务型对话的状态追踪和文本生成通过 Seq2Seq 模型来完成。此外,在此任务的基础上,还提出了 ...原创 2018-10-10 15:23:26 · 2256 阅读 · 0 评论 -
《building a conversational agent overnight with dialogue self play》总结
一、概述机器语音系统的一个巨大缺点是机器人不知道如何“好好说话”。由于这个原因,它们无法合成自己的句子。它们需要人类来为它们编写一些语法规则,从而它们可以自己构造句子。本文提出了一个M2M机器对话机器(Machines Talking To Machines)框架,它是一个结合自动化和众包模式的框架,可快速引导端到端对话智能体在任意域中进行目标导向的对话。换句话说,M2M是一个功能导向的流程...原创 2018-10-10 15:57:44 · 635 阅读 · 0 评论 -
《Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN》文章学习
这篇论文是苏州大学陈新建教授团队的。因为这篇论文中有去噪,所以关注了这篇论文。一、文章概要这篇论文主要思想是:提出了一种端到端的用于基于条件生成对抗网络(cGAN),用于去除Bscans中的斑点噪声。目标函数中引入了新的边缘损耗,使网络对边缘信息敏感,从而在均匀区域平滑的同时实现了良好的边缘保持。文中所述,边缘信息的作用:虽然OCT去噪的主要目的是减少均匀区域的颗粒状外观,但另一个重要...原创 2019-04-15 13:43:39 · 1753 阅读 · 0 评论 -
《Unprocessing Images for Learned Raw Denoising》论文阅读
摘要当用于训练的数据与用于评估的数据相似时,机器学习技术最有效。这对于学习过的单图像去噪算法来说是正确的,这些算法应用于真实的原始相机传感器读数,但由于实际的限制,通常在合成图像数据上进行训练。虽然从合成图像推广到真实图像需要仔细考虑相机传感器的噪声特性,图像处理管道的其他方面(如增益、颜色校正和色调映射)常常被忽略,尽管它们对原始测量数据如何转换成最终图像有重要影响。为了解决这个问题,我们提...原创 2019-06-12 22:44:46 · 4691 阅读 · 0 评论