python代码实现TF-IDF

1、TF-IDF解释

TF-IDF(Term frequency–inverse document frequency),中文翻译就是词频 - 逆文档频率,是一种用来计算关键词的传统方法。

TF(Term Frequency):TF 的意思就是词频,是指某个词(Term)在一篇新闻中出现的次数。

考虑一些非常常见的词,比如说 “你的”“我的”“今天” 这种词,可能在一篇新闻中会反复出现,但是这种词明显并不重要,于是有了 IDF。

IDF(Inverse Document Frequency):IDF 称为逆文档频率,这个词我们用公式来看一下可能更容易理解。
逆文档频率(IDF)=log(新闻的总数量包含某个词的新闻总量+1)逆文档频率(IDF)=log(\frac {新闻的总数量}{包含某个词的新闻总量+1})逆文档频率(IDF=lo

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值