周一至周四:基础知识和数学基础
-
第1天:深度学习介绍
- 了解什么是人工智能、机器学习和深度学习
- 深度学习的历史和发展
- 深度学习的应用领域
-
第2-3天:数学基础
- 线性代数(矩阵运算、特征值、特征向量)
- 微积分(偏导数、链式法则)
- 概率论与统计(概率分布、期望、方差)
-
第4-5天:机器学习基础
- 监督学习、无监督学习和强化学习的基本概念
- 常见的机器学习算法概览(线性回归、决策树、支持向量机等)
-
第6-7天:编程基础
- Python编程基础
- NumPy、Pandas等数据处理库的使用
- Matplotlib、Seaborn等数据可视化工具的使用
周五至周二:深度学习核心概念
-
第8-10天:神经网络基础
- 神经元和感知机
- 前馈神经网络和反向传播算法
- 损失函数和优化器
-
第11-13天:深入神经网络
- 卷积神经网络(CNN)
- 循环神经网络(RNN)和长短期记忆网络(LSTM)
- 正则化技术(如Dropout、L1/L2正则化&#x