PyTorch深度学习框架60天进阶学习教程--目录

一、PyTorch教程简介

这是一套系统化的PyTorch深度学习培训课程,采用理论与实操相结合的方式,涵盖从基础到前沿的完整技术栈。

1、基础阶段(1-13天)

从PyTorch环境配置、张量运算、自动微分开始,逐步掌握数据处理、模型构建、损失函数和优化器原理,通过MNIST手写数字识别和CIFAR-10图像分类等实战项目巩固基础。

2、进阶阶段(14-40天)

深入循环神经网络、Transformer架构、生成对抗网络、强化学习等核心技术,涉及NLP文本处理、多模态学习、图神经网络、AutoML等热门应用领域,同时学习模型压缩、部署优化等工程实践。

3、前沿阶段(41-60天)

探索扩散模型、大模型微调、联邦学习、3D视觉、因果推理等前沿技术,重点关注工业级部署、模型鲁棒性和安全性。整个课程注重实战项目,包括医疗影像诊断、工业缺陷检测、智能对话系统等真实应用场景,培养学员的工程实践能力和创新思维。

二、PyTorch详细目录

1、Day1(理论)

主题:PyTorch核心特性与安装配置

简介:详解PyTorch动态计算图机制与TensorFlow静态图的本质区别,演示Anaconda环境下CUDA驱动匹配策略。重点讲解conda虚拟环境创建技巧,包括指定Python版本、独立环境变量配置,以及Jupyter Notebook内核关联方法。通过对比PyTorch GPU/CPU版本安装命令差异,帮助学员规避常见依赖冲突问题。

链接:每天30分钟轻松掌握Pytorch:Day 1 PyTorch核心特性与安装配置-CSDN博客

2、Day2(理论)

主题:张量运算基础

简介:系统讲解张量的维度变换(view/reshape)、广播机制应用场景及内存共享原理。通过矩阵乘法的广播案例演示,解析不同维度张量的自动对齐规则。结合内存优化策略,对比contiguous()与transpose()操作对计算效率的影响,并演示使用torch.cuda.max_memory_allocated()监控显存使用。

链接:每天30分钟轻松掌握Pytorch:Day 2 张量运算基础_pytorch每天-CSDN博客

3、Day3(实操)

主题:手写数字识别实践

简介:使用MNIST数据集完成端到端处理流程,包括数据下载( torchvision.datasets)、张量归一化处理、可视化显示( matplotlib.pyplot.imshow)。重点实践DataLoader的多进程加载配置(num_workers设置),并构建包含隐藏层的全连接网络,使用交叉熵损失实现准确率达85%以上的基础模型。

链接:每天30分钟轻松掌握Pytorch:Day 3 手写数字识别实践-CSDN博客

4、Day4(理论)

主题:自动微分系统

简介:深入解析requires_grad属性传播机制与计算图构建原理,演示梯度缓存清除(detach()/no_grad())的适用场景。通过自定义函数的@torch.jit.script装饰器实现,对比动态图与静态图模式下梯度计算差异。结合雅可比矩阵实例,讲解torch.autograd.grad函数的二阶导数计算方法。

链接:PyTorch深度学习框架60天进阶学习计划 - 第4天:自动微分系统-CSDN博客

5、Day5(理论)

主题:数据加载机制

简介:详解Dataset抽象类的__getitem__方法实现规范,剖析DataLoader的sampler参数与collate_fn的批处理逻辑。通过自定义花卉分类数据集案例,演示图像EXIF信息读取与标签映射技巧。重点讲解多GPU训练时DistributedSampler的数据分片策略及seed同步机制。

链接:PyTorch深度学习框架60天进阶学习计划 - 第5天:数据加载机制-CSDN博客

6、Day6(实操)

主题:图像分类预处理

简介:使用CIFAR-10数据集实践完整预处理流程,演示如何通过transforms.Compose组合多种数据增强方法(随机水平翻转/随机裁剪/颜色抖动)。重点讲解批归一化的计算逻辑,对比训练模式与推理模式下的不同表现。通过可视化对比增强前后的图像样本,分析数据增强对模型泛化能力的影响,并实践使用tensorboard记录增强效果。

链接:PyTorch深度学习框架进阶学习计划 - 第6天:图像分类预处理-CSDN博客

7、Day7(理论)

主题:模型构建基础

详解nn.Module类的继承机制与参数注册原理,剖析register_buffer与register_parameter的区别。通过构建多层感知机案例,演示参数初始化方法(Xavier/Kaiming)的选择依据。结合模型可视化工具Netron,解析模型计算图的生成逻辑,并讲解如何通过hook机制实现中间层特征提取。

链接:PyTorch深度学习框架进阶学习计划 - 第7天:模型构建基础_torch框架进阶-CSDN博客

8、Day8(理论)

主题:损失函数原理

系统解析交叉熵损失在分类任务中的数学推导,对比二分类与多分类场景的公式差异。通过PyTorch的nn.BCEWithLogitsLoss实践,演示sigmoid激活与损失计算的融合优化。结合Focal Loss案例,讲解类别不平衡问题的解决方案,并分析label smoothing正则化技术的实现原理。

链接:PyTorch深度学习框架60天进阶学习计划 - 第8天:损失函数原理-CSDN博客

9、Day9(实操)

主题:线性回归实现

构建波士顿房价预测模型,实践特征标准化(StandardScaler)与数据分割(train_test_split)流程。通过自定义损失函数实现Huber Loss,对比其与MSE在异常值处理上的差异。使用torch.optim.LBFGS优化器进行实验,分析二阶优化方法在小数据集上的性能表现。

链接:PyTorch深度学习框架第9天:线性回归实现(波士顿房价预测实战)_线性回归计算波士顿房价,pytorch-CSDN博客

10、Day10(理论)

主题:优化器原理

深入解析动量优化器的物理意义,通过球体滚动模型图解动量系数β的作用机制。对比Adam优化器的自适应学习率特性,详解epsilon参数对数值稳定性的影响。结合SWATS论文,讲解如何实现Adam到SGD的自动切换策略,并演示自定义优化器的注册方法。

链接:PyTorch深度学习框架60天进阶计划第10天:优化器原理深度解析_swats优化器-CSDN博客

11、Day11(实操)

主题:过拟合解决方案

在CIFAR-10数据集上实践Dropout层配置策略,分析不同丢弃概率对验证集准确率的影响。通过权重衰减实验(weight_decay参数),演示L2正则化的具体实现。结合Early Stopping机制,使用torch.utils.data.random_split创建验证集,并实践模型检查点保存功能。

链接:PyTorch深度学习框架60天进阶计划第11天:过拟合解决方案深度实践-CSDN博客

12、Day12(理论)

主题:模型评估指标

详解混淆矩阵的构建方法,解析精确率/召回率/F1值的计算关系。通过sklearn.metrics库实践多分类评估,对比micro/macro平均的适用场景。演示使用torchmetrics库实现动态指标计算,并讲解如何自定义AUC-ROC曲线评估模块。

链接:PyTorch深度学习框架60天进阶计划第12天:模型评估指标深度解析_pytorch torchmetrics 评价图表-CSDN博客

13、Day13(实操)

主题:模型保存与部署

实践state_dict的保存与加载方法,对比torch.save的完整模型保存与参数保存的区别。通过ONNX格式导出案例,演示模型跨框架部署流程。使用TorchScript进行模型序列化,分析ScriptModule与TraceModule的适用场景差异,并实践移动端部署的量化压缩技术。

链接:PyTorch深度学习框架60天进阶学习计划第13天:模型保存与部署_onnx模型保存和加载-CSDN博客

14、Day14(理论)

主题:循环神经网络进阶

详解BiLSTM的双向信息流机制,通过门控网络分析时序特征融合策略。结合注意力机制原理,推导缩放点积注意力的数学表达式。演示如何通过PyTorch的nn.MultiheadAttention模块实现Transformer编码层,并讲解位置编码的正弦函数实现方法。

链接:PyTorch深度学习框架60天进阶学习计划第14天:循环神经网络进阶-CSDN博客

15、Day15(实操)

主题:迁移学习实践

使用预训练ResNet模型进行花卉分类,实践模型微调策略。演示冻结特征提取层与解冻全连接层的参数配置方法。通过特征可视化工具CAM,分析模型关注区域的变化。对比不同学习率分组策略(差分学习率)对迁移效果的影响。

链接:PyTorch深度学习框架60天进阶学习计划第15天:迁移学习实践-CSDN博客

16、Day16(理论)

主题:生成对抗网络原理

解析GAN的minimax博弈公式,推导生成器与判别器的损失函数。通过Wasserstein距离改进方案,分析梯度惩罚的实现原理。对比DCGAN的架构设计规范,详解批量归一化在生成器中的特殊应用方式。

链接:PyTorch深度学习框架60天进阶学习计划第16天:循环神经网络进阶!-CSDN博客

17、Day17(实操)

主题:强化学习基础

构建DQN智能体实现CartPole平衡控制,实践经验回放机制与目标网络更新策略。通过gymnasium环境设计状态预处理管道,演示ε-greedy策略的衰减实现。使用PyTorch的分布模块实现策略梯度算法,分析优势函数的计算方法。

链接:PyTorch深度学习框架60天进阶学习计划 - 第17天:强化学习基础-CSDN博客

18、Day18(理论)

主题:模型压缩技术

详解知识蒸馏的软标签生成策略,推导师生模型间的KL散度损失。讲解通道剪枝的评估准则(L1-norm/APoZ),分析结构化剪枝与量化训练的协同优化方法。通过Torch.fx实践动态计算图修改,实现自动化模型压缩流程。

链接:PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术_滤波器权重的l1范数计算实例-CSDN博客

19、Day19(实操)

主题:时间序列预测

构建LSTM-Attention模型进行股票价格预测,实践滑动窗口数据构造方法。通过Teacher Forcing技术改进序列生成效果,对比不同归一化策略(MinMax/Z-Score)的适用场景。使用Prophet基准模型进行预测效果对比,并实践多步预测的滚动验证方法。

链接:PyTorch深度学习框架60天进阶学习计划 - 第19天:时间序列预测_prophet强化学习-CSDN博客

20、Day20(实操)

主题:端到端图像生成系统

综合应用CycleGAN与风格迁移技术,开发艺术风格转换系统。实践多GPU训练配置与混合精度训练技巧,通过Gradio构建交互式Web界面。部署ONNX Runtime推理引擎,并实现模型性能监控仪表盘。最终项目将包含完整的CI/CD流水线与单元测试案例。

链接:PyTorch深度学习框架进阶学习计划 - 第20天:端到端图像生成系统-CSDN博客

21、Day21(理论)

主题:自然语言处理基础

介绍词嵌入与序列建模原理,对比Word2Vec与BERT的语义捕获差异,解析RNN在文本处理中的梯度问题。

链接:PyTorch深度学习框架进阶学习计划 - 第21天:自然语言处理基础_深度学习进阶自然语言处理-CSDN博客

22、Day22(实操)

主题:命名实体识别实战

使用BiLSTM-CRF实现医疗文本实体抽取,实践CRF层转移矩阵学习,分析维特比解码算法的动态规划实现。

链接:PyTorch深度学习框架60天进阶学习计划 - 第22天:命名实体识别实战_命名实体维特比算法python实现-CSDN博客

23、Day23(理论)

主题:Transformer架构解析

推导自注意力机制数学公式,详解位置编码的傅里叶基函数设计,对比编码器-解码器结构的信息流动差异。

链接:PyTorch深度学习框架60天进阶学习计划 - 第23天:Transformer架构解析-CSDN博客

24、Day24(实操)

主题:文本生成系统

微调GPT-2实现新闻标题生成,实践Top-k采样与温度调节,使用BLEU指标评估生成文本质量。

链接:PyTorch深度学习框架60天进阶学习计划 - 第24天:文本生成系统_基于 transformer的新闻标题生成-CSDN博客

25、Day25(理论)

主题:模型部署基础

讲解ONNX运行时架构,分析计算图优化技术,对比CPU/GPU推理延迟差异。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第25天:移动端模型部署(第一部分)_pytorch移动部署框架-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第25天:移动端模型部署(第二部分)-CSDN博客

26、Day26(实操)

主题:移动端模型部署

使用TensorRT优化图像分类模型,实践INT8量化校准,测试Android端推理帧率提升效果。

链接:PyTorch深度学习框架60天进阶学习计划-第26天:移动端模型部署TensorRT优化与Android端部署实践_tensorrt android-CSDN博客

27、Day27(理论)

主题:模型量化原理

解析量化感知训练流程,对比对称/非对称量化方案,分析混合精度推理的内存优化策略。

链接:PyTorch深度学习框架60天进阶学习计划-第27天:模型量化原理_pytorch将模型量化为整形-CSDN博客

28、Day28(实操)

主题:多模态模型实践

构建图文匹配系统,联合训练CLIP架构,实现跨模态特征空间对齐。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(一)_图文匹配系统-CSDN博客

 链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第28天:多模态模型实践(二)-CSDN博客

29、Day29(理论)

主题:自监督学习

对比SimCLR与MoCo的负样本构建策略,解析对比损失函数的设计哲学。

链接(教程):

PyTorch深度学习框架60天进阶学习计划-第29天:自监督学习_pytorch 自建督学习-CSDN博客

链接(问题解答):

PyTorch深度学习框架60天进阶学习计划-第29天:自监督学习-问题解答(一)-CSDN博客

30、Day30(实操)

主题:知识蒸馏实战

实现BERT模型压缩,设计师生模型蒸馏策略,分析软标签温度参数影响。

链接:PyTorch深度学习框架60天进阶学习计划-第30天:知识蒸馏实战_pytorch实现蒸馏-CSDN博客

31、Day31(理论)

主题:图神经网络基础

解析图卷积网络的消息传递机制,对比谱域与空域方法的计算差异,推导节点嵌入的聚合公式。

链接:PyTorch深度学习框架60天进阶学习计划-第31天:图神经网络基础-CSDN博客

32、Day32(实操)

主题:社交网络分析实战

构建GAT模型实现社区发现,实践PyG框架的异构图处理,可视化节点聚类效果。

链接:PyTorch深度学习框架60天进阶学习计划-第32天:社交网络分析实战_训练gat模型-CSDN博客

33、Day33(理论)

主题:AutoML原理

详解神经架构搜索(NAS)的强化学习范式,分析ENAS算法的参数共享策略。

链接:Pytorch深度学习框架60天进阶学习计划 - 第33天:AutoML原理_automl pytorch-CSDN博客

34、Day34(实操)

主题:自动化模型调优

使用Optuna优化超参数组合,实践多目标优化策略,对比贝叶斯优化与网格搜索效率。

链接:Pytorch深度学习框架60天进阶学习计划 - 第34天:自动化模型调优-CSDN博客

35、Day35(理论)

主题:模型解释性

解析LIME与SHAP的局部近似原理,对比梯度类方法与扰动法的可视化效果差异。

链接:Pytorch深度学习框架60天进阶学习计划 - 第35天:模型解释性_kernelshap可以用在pytorch模型吗-CSDN博客

36、Day36(实操)

主题:医疗影像诊断

实现3D ResNet肺部CT分析,实践数据增强策略,设计类别不平衡问题的损失函数。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第36天:医疗影像诊断(一)_3d医学影像深度学习特征提取网络结构搭建-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第36天:医疗影像诊断(二)_pytorch 医学影像课程-CSDN博客

37、Day37(理论)

主题:元学习框架

推导MAML的参数更新公式,分析原型网络在少样本学习中的度量空间构建。

链接:PyTorch深度学习框架60天进阶学习计划 - 第37天:元学习框架_pytorch 元学习-CSDN博客

38、Day38(实操)

主题:视频目标检测

基于YOLOv8实现运动目标追踪,实践时序特征融合,评估检测结果的mAP指标。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第38天:视频目标检测(一)_视频目标跟踪检测 培训-CSDN博客

链接(第二部分):

PyTorch深度学习框架60天进阶学习计划 - 第38天:视频目标检测(二)-CSDN博客

39、Day39(理论)

主题:联邦学习系统

解析差分隐私机制,对比横向/纵向联邦的数据划分策略,分析模型聚合的安全协议。

链接:Pytorch深度学习框架60天进阶学习计划 - 第39天:联邦学习系统_安装opacus==v1.4.1-CSDN博客

40、Day40(实操)

主题:工业缺陷检测

部署EfficientDet到嵌入式设备,实践ONNX-TensorRT转换,测试产线实时检测速度。

链接(第一部分):

Pytorch深度学习框架60天进阶学习计划 - 第40天:工业缺陷检测(一)_pytorch缺陷检测-CSDN博客

链接(第二部分):

Pytorch深度学习框架60天进阶学习计划 - 第40天:工业缺陷检测(二)_efficientdet算法流程图 高清-CSDN博客

41、Day41(理论)

主题:生成对抗网络进阶

解析Wasserstein GAN的梯度惩罚机制,对比条件生成与无监督生成的模式坍塌差异。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第41天:生成对抗网络进阶(一)_gan网络梯度惩罚-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第41天:生成对抗网络进阶(二)-CSDN博客

链接(第三部分):PyTorch深度学习框架60天进阶学习计划 - 第41天:生成对抗网络进阶(三)-CSDN博客

Pytorch深度学习框架60天进阶学习计划 - 第41天:生成对抗网络进阶(三)-CSDN博客

42、Day42(实操)

主题:图像风格迁移

实现CycleGAN跨域转换,实践循环一致性损失设计,评估生成图像的FID指标。

链接:Pytorch深度学习框架60天进阶学习计划 - 第42天:图像风格迁移_cyclegan常用评估指标-CSDN博客

43、Day43(理论)

主题:强化学习基础

推导Q-learning贝尔曼方程,分析策略梯度算法的方差优化策略。

链接(第一部分):Pytorch深度学习框架60天进阶学习计划 - 第43天:强化学习基础(一)-CSDN博客

链接(第二部分):Pytorch深度学习框架60天进阶学习计划 - 第43天:强化学习基础(二)-CSDN博客

44、Day44(实操)

主题:游戏AI训练

构建DQN智能体玩Atari游戏,实践经验回放机制,对比ε-greedy探索策略效果。

链接(第一部分):Pytorch深度学习框架60天进阶学习计划 - 第44天:游戏AI训练(一)-CSDN博客

链接(第二部分):Pytorch深度学习框架60天进阶学习计划 - 第44天:游戏AI训练(二)_pytorch巡逻ai玩游戏-CSDN博客

45、Day45(理论)

主题:神经架构搜索

详解DARTS的可微分搜索空间,分析权重共享策略的计算效率优化。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第45天:神经架构搜索(一)_pytorch 神经架构搜索-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第45天:神经架构搜索(二)_神经架构搜索darts-CSDN博客

46、Day46(实操)

主题:自动化模型设计

使用ENAS算法生成图像分类网络,对比搜索空间设计对模型性能的影响。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第46天:自动化模型设计(一)-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第46天:自动化模型设计(二)-CSDN博客

47、Day47(理论)

主题:模型压缩技术

解析知识蒸馏的温度调节机制,对比通道剪枝与权重剪枝的精度损失差异。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第47天:模型压缩蒸馏技术(一)-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第47天:模型压缩蒸馏技术(二)_pytorch模型剪枝 蒸馏-CSDN博客

48、Day48(实操)

主题:移动端模型优化

实践MobileNetV3的NAS搜索,实现TensorFlow Lite量化部署到边缘设备。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第48天:移动端模型优化(一)-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第48天:移动端模型优化(二)-CSDN博客

49、Day49(理论)

主题:联邦学习安全

分析差分隐私噪声注入机制,对比同态加密与安全多方计算的通信开销。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第49天:联邦学习安全(一)_pytorch gradnorm-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第49天:联邦学习安全(二)_security multi-party computation 联邦学习-CSDN博客

50、Day50(实操)

主题:分布式模型训练

使用PySyft框架实现横向联邦学习,测试MNIST数据集的分布式训练效率。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第50天:分布式模型训练(一)-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第50天:分布式模型训练(二)-CSDN博客

51、Day51(理论)

主题:扩散模型原理

解析DDPM去噪过程数学推导,对比离散与连续时间建模差异,推导变分下界损失函数。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第51天:扩散模型原理(一)_扩散噪声公式 ho等人-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第51天:扩散模型原理(二)-CSDN博客

52、Day52(实操)

主题:图文互生成系统

实现CLIP引导的图像描述生成,实践跨模态注意力机制,评估生成文本与图像的语义一致性。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第52天:图文互生成系统(一)-CSDN博客

链接(第二部分):

PyTorch深度学习框架60天进阶学习计划 - 第52天:图文互生成系统(二)_跨模态注意力 跨注意力-CSDN博客

53、Day53(理论)

主题:自监督学习范式

对比对比学习与掩码建模差异,分析MoCo动量编码器的特征一致性原理。

链接(第一部分):Pytorch深度学习框架60天进阶学习计划 - 第53天:自监督学习范式(一)_动量编码器pytorch-CSDN博客

链接(第二部分):

Pytorch深度学习框架60天进阶学习计划 - 第53天:自监督学习范式(二)-CSDN博客

54、Day54(实操)

主题:工业级部署实战

构建TorchServe图像分类服务,实践模型版本管理与A/B测试,监控推理服务的QPS指标。

链接(第一部分):Pytorch深度学习框架60天进阶学习计划 - 第54天:工业级部署实战(一)_mar结尾是什么模型文件-CSDN博客

链接(第二部分):

Pytorch深度学习框架60天进阶学习计划 - 第54天 工业级部署实战(二)-CSDN博客

链接(第三部分):

Pytorch深度学习框架60天进阶学习计划 - 第54天 工业级部署实战(三)_pth模型工业级部署-CSDN博客

55、Day55(理论)

主题:3D视觉基础

解析点云特征提取网络,对比体素化与原始点云处理方法,推导旋转等变卷积运算。

链接(第一部分):Pytorch深度学习框架60天进阶学习计划 - 第55天:3D视觉基础(一)-CSDN博客

链接(第二部分):

Pytorch深度学习框架60天进阶学习计划 - 第55天: 3D视觉基础(二)-CSDN博客

56、Day56(实操)

主题:大模型微调实践

使用LoRA适配器微调LLaMA-2,实践指令模板构建,分析PEFT参数效率。

链接(第一部分):Pytorch深度学习框架60天进阶学习计划 - 第56天:大模型微调实践(一)_pytorch lora微调-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划-第56天:大模型微调实践(二)_pytorch lora微调-CSDN博客

57、Day57(理论)

主题:因果推理模型

解析反事实推理框架,对比介入与观测分布的差异,分析因果发现算法。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划-第57天:因果推理模型(一)_因果推理 深度学习-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划-第57天:因果推理模型(二)- 高级算法与深度学习融合_双重机器学习 python-CSDN博客

58、Day58(实操)

主题:端到端对话系统

集成ASR+TTS+LLM构建语音助手,实践流式推理优化,测试端到端响应延迟。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第58天端到端对话系统(一):打造你的专属AI语音助手-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第58天端到端对话系统(二):流式优化与生产部署-CSDN博客

链接(第三部分):PyTorch深度学习框架60天进阶学习计划 - 第58天端到端对话系统(三)-CSDN博客

59、Day59(理论)

主题:模型鲁棒性

分析对抗样本生成机理,推导PGD攻击的迭代公式,研究防御蒸馏技术。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第59天模型鲁棒性(一):对抗样本生成机理与PGD攻击详解_深度学习pgd攻击-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第59天模型鲁棒性(二):对抗样本生成机理与PGD攻击详解-CSDN博客

60、Day60(实操)

主题:模型压缩实战

应用知识蒸馏压缩ViT模型,实践注意力迁移策略,对比师生模型精度差异。

链接(第一部分):PyTorch深度学习框架60天进阶学习计划 - 第60天 模型压缩实战(一):知识蒸馏压缩ViT模型-CSDN博客

链接(第二部分):PyTorch深度学习框架60天进阶学习计划 - 第60天 模型压缩实战(二):注意力迁移策略深度实现-CSDN博客

链接(第三部分):PyTorch深度学习框架60天进阶学习计划 - 第60天 模型压缩实战(三):完整项目实战与性能评估-CSDN博客

链接(第四部分):PyTorch深度学习框架60天进阶学习计划 - 第60天 模型压缩实战(四):完整项目实战与性能评估-CSDN博客


欢迎大家关注同名公众号《凡人的工具箱》:关注就送价值1999AI学习大礼包

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值