Python实现VAR模型:时间序列分析与预测

创作不易,您的关注、点赞、收藏和转发是我坚持下去的动力!

VAR模型

VAR(向量自回归)模型是一种统计模型,用于捕捉多个时间序列变量之间的线性相互依赖关系。在Python中,常用的库如statsmodels可以帮助我们实现VAR模型。下面是一个简单的Python实现VAR模型的示例代码以及对应的分析报告。

1. 数据准备

我们首先准备一些模拟数据来展示VAR模型的使用。在实际应用中,你会使用实际的时间序列数据。

import numpy as np
import pandas as pd
from statsmodels.tsa.api import VAR

# 生成模拟数据
np.random.seed(42)
n_obs = 100
dates = pd.date_range(start='2020-01-01', periods=n_obs, freq='M')
data = np.random
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能科技前沿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值