创作不易,您的关注、点赞、收藏和转发是我坚持下去的动力!
VAR(向量自回归)模型是一种统计模型,用于捕捉多个时间序列变量之间的线性相互依赖关系。在Python中,常用的库如statsmodels
可以帮助我们实现VAR模型。下面是一个简单的Python实现VAR模型的示例代码以及对应的分析报告。
1. 数据准备
我们首先准备一些模拟数据来展示VAR模型的使用。在实际应用中,你会使用实际的时间序列数据。
import numpy as np
import pandas as pd
from statsmodels.tsa.api import VAR
# 生成模拟数据
np.random.seed(42)
n_obs = 100
dates = pd.date_range(start='2020-01-01', periods=n_obs, freq='M')
data = np.random