创作不易,您的打赏、关注、点赞、收藏和转发是我坚持下去的动力!
图卷积网络(Graph Convolutional Networks, GCN)是一种能够直接在图结构数据上进行操作的神经网络模型。它能够处理不规则的数据结构,捕获节点之间的依赖关系,广泛应用于社交网络分析、推荐系统、图像识别、化学分子分析等领域。
主流的图卷积网络包括以下几种:
1. 经典图卷积网络(GCN)
经典GCN使用图拉普拉斯算子将卷积操作推广到图数据中,具体而言,它通过对图的邻接矩阵进行归一化操作来进行信息传播。GCN的核心思想是通过卷积操作在每一层中聚合节点邻居的信息,最终对节点进行表示。
示例代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
import networkx as nx
import numpy as np
class GCNLayer(nn.Module):
def __init__(self, in_features, out_features):
super(GCNLayer, self).__init__()
self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features))
nn.init.xavier_uniform_(self.weight)
def forward(self, X, adj):
support = torch.mm(X, self.weight)
output = torch.mm(adj, support)
return output
class GCN(nn.Module):
def __init__(self, in_features, hidden_features, out_features):
super(GCN, self).__init__()
self.layer1 = GCNLayer(in_features, hidden_features)
self.layer2 = GCNLayer(hidden_features, out_features)
def forward(self, X