Python实现Vgg16经典网络架构代码

本文介绍了Python实现Vgg16网络架构,探讨了深度对模型性能的影响。尽管加深网络能提升准确率,但边际收益递减,参数量大幅增加,对计算资源造成挑战。VGG16架构通过增加卷积层数量提高深度,但研究表明,盲目增加深度不如寻找更高效的方法。网络深度通常与数据复杂度相关,适当选择网络层数和预处理能平衡计算效率与准确率。VGG16因其简洁有效性,成为实验和测试的理想选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python实现Vgg16经典网络架构代码

在这里插入图片描述

可以看到,从16层到19层,准确率上升了1.6%,但从19层到35层,准确率却只上升了0.6%。不难发现
——16层明显比13层要高,但19层却和16层差异不太大,35层与19层之间的差异就更小,随着深度的
加深,模型的学习能力大概率会增强,但深度与模型效果之间的关系不是线性的,可以增长的边际准确
率是在递减的,准确率的变化会逐渐趋于平缓。但同时,参数量却是高速增加的,VGG19的参数量就达
到了1.43亿个,对于任何个人计算机来说这个参数量都是一个巨大的考验。
受启发于VGG架构,在过去数年的研究中,人们通过实验发现了这样的结论:在不改变原始卷积层输入
输出机制的前提下,增加卷积层的数目来增加深度,会很快让模型效果和性能都达到上限。深度并不能
高效提升模型的效果,需要先降低模型的训练成本,才能够追求更深的神经网络。如果想要通过“加深”
卷积神经网络来实现网络效果的飞跃,那必须是从16层加到160层,而不是从16层加到19层。事实上,
在2014年后的ILSVRC上,赢得冠军的网络架构变得越来越复杂,深度也越来越深,在2017年ILSVRC闭
幕之前,网络深度大约停留在了220层左右,这是得益于研究者们发现了更高效地提升深度的方法。
在现在的眼光来看,网络的实际深度一般与数据的复杂程度有关。对于ImageNet这样的数据集,200层
的网络

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

quintin007

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值