pytorch中的 repeat

本文介绍了PyTorch中的repeat函数,对比了与numpy.repeat的不同,并提供了扩展用法。在numpy中,repeat函数用于按指定轴重复矩阵元素。然而,在PyTorch中,由于广播机制未实现,需要使用repeat方法来达到类似效果。文章通过实例展示了如何在PyTorch中正确使用repeat。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载自:https://blog.csdn.net/NockinOnHeavensDoor/article/details/80273268  (扩展用法)

              https://blog.csdn.net/cetrol_chen/article/details/79147878(基本用法)

首先看一下这个函数

numpy.repeat(a, repeats, axis=None) 
功能: 将矩阵A按照给定的axis将每个元素重复repeats次数 
参数: a:输入矩阵, repeats:每个元素重复的次数, axis:需要重复的维度 
返回值: 输出矩阵

>>> np.repeat(3, 4)
array([3, 3, 3, 3])  #每个元素重复4次
>>> x = np.array([[1,2],[3,4]])
>>> np.repeat(x, 2)
array([1, 1, 2, 2, 3, 3, 4, 4]) #每个元素重复两次
>>> np.repeat(x, 3, axis=1)
array([[1, 1, 1, 2, 2, 2],
       [3, 3, 3, 4, 4, 4]])   #每个元素按照列重复3次
>>> np.repeat(x, [1, 2], axis=0)  
array([[1, 2],
       [3, 4],
       [3, 4]])  #第1行元素重复1次,第2行元素重复2次

然后看一下扩展的用法: 

X = np.random.randn(100, 10)
W = np.random.randn(10, 64)
b = np.ones(64)
z = X @ W + b # Works

用torch执行会报错,因为broadcasting机制还没有实现; 

 

X = torch.randn(100, 10)
W = torch.randn(10, 64)
b = torch.ones(64)
z = X @ W + b # Error, cannot add tensor of size [100, 64] and [64]

 处理方法是用repeat方法:

 

X = torch.randn(100, 10)
W = torch.randn(10, 64)
b = torch.ones(64)  # 维度是1行64列
b = b.repeat(X.size(0), 1) # b.repeat(100,1) 维度互相乘100*1,1*64 使得最后的维度和X*W的维度一样最后得到它的维度是100*64
z = X @ W +  b

 

例子:

b = torch.ones(1)
b.repeat(2,5)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值