1.Prove that v1,…,vr∈V∗v_1,\dots,v_r\in V^*v1,…,vr∈V∗ is linearly dependent if and only if
v1∧⋯∧vr=0v_1\wedge\dots\wedge v_r=0v1∧⋯∧vr=0
Proof:
If v1,… .vrv^1,\dots.v^rv1,….vr is linearly dependent, ∃vr=a1v1+⋯+ar−1vr−1\exists v^r=a_1v^1+\dots +a_{r-1}v^{r-1}∃vr=a1v1+⋯+ar−1vr−1, thus
v1∧⋯∧vr=∑λ=1r−1aλv1∧⋯∧vr−1∧vλ=0v^1\wedge \dots \wedge v^r=\sum_{\lambda=1}^{r-1}a_{\lambda}v^1\wedge \dots\wedge v^{r-1}\wedge v^{\lambda}=0v1∧⋯∧vr=λ=1∑r−1aλv1∧⋯∧vr−1∧vλ=0
If v1,…,vrv^1,\dots,v^rv1,…,vr is linearly independent, we can enlarge them to be a basis of V∗:{v1,…,vr,…,vn}.V^*:\{v^1,\dots,v^r,\dots,v^n\}.V∗:{v1,…,vr,…,vn}. {ei}\{e_i\}{ei} is the conjugate basis of {vi}\{v^i\}{vi} in VVV, thus
v1∧⋯∧vr(e1,…,er)=δi1…ir1…rvi1(e1,…,er)=(v1(e1)…v1(er)⋮⋮vr(e1)…vr(er))=1\begin{aligned}
v^1\wedge\dots\wedge v^r(e_1,\dots,e_r)&=\delta^{1\dots r}_{i_1\dots i_r}v^{i_1}(e_1,\dots ,e_r)\\
&=\begin{pmatrix}
v^1(e_1)& \dots & v^1(e_r)\\
\vdots&&\vdots\\
v^r(e_1) & \dots & v^r(e_r)
\end{pmatrix}\\
&=1
\end{aligned}v1∧⋯∧vr(e1,…,er)=δi1…ir1…rvi1(e1,…,er)=⎝⎜⎛v1(e1)⋮vr(e1)……v1(er)⋮vr(er)⎠⎟⎞=1
thus, v1∧⋯∧vr≠0.v^1\wedge \dots \wedge v^r\neq 0.v1∧⋯∧vr=0.
2.Let F:V→WF: V\rightarrow WF:V→W be a linear map, prove that for Φ∈Ar(W)\Phi\in A^r(W)Φ∈Ar(W) and Ψ∈As(W)\Psi\in A^s(W)Ψ∈As(W)
F∗(Φ∧Ψ)=F∗Φ∧F∗Ψ.F^*(\Phi\wedge\Psi)=F^*\Phi\wedge F^*\Psi.F∗(Φ∧Ψ)=F∗Φ∧F∗Ψ.
Proof:
∀u1,…,ur+s∈V\forall u_1,\dots,u_{r+s}\in V∀u1,…,ur+s∈V, we have:
(F∗(Φ∧Ψ))(u1,…,ur+s)=(Φ∧Ψ)(F(u1),…,F(ur+s))=1r!s!δ1…r+si1…ir+sΦ(F(ui1),…,F(uir))⋅Ψ(F(uir+1),…,F(uir+s))=(F∗Φ)∧(F∗Ψ)(u1,…,ur+s)\begin{aligned}
&(F^*(\Phi\wedge\Psi))(u_1,\dots,u_{r+s})\\
&=(\Phi\wedge\Psi)(F(u_1),\dots,F(u_{r+s}))\\
&=\frac{1}{r!s!}\delta^{i_1\dots i_{r+s}}_{1\dots {r+s}}\Phi(F(u_{i_1}),\dots,F(u_{i_r}))\cdot \Psi(F(u_{i_{r+1}}),\dots,F(u_{i_{r+s}}))\\
&=(F^*\Phi)\wedge (F^*\Psi)(u_1,\dots,u_{r+s})
\end{aligned}(F∗(Φ∧Ψ))(u1,…,ur+s)=(Φ∧Ψ)(F(u1),…,F(ur+s))=r!s!1δ1…r+si1…ir+sΦ(F(ui1),…,F(uir))⋅Ψ(F(uir+1),…,F(uir+s))=(F∗Φ)∧(F∗Ψ)(u1,…,ur+s)
3.Deduce the transformation formula of coefficients of a (r,s)(r,s)(r,s)-tensor under the change
of local coordinates.
Proof:
Suppose (U,φ;xi)(U,\varphi;x^i)(U,φ;xi) is a chart of MMM, (r,s)(r,s)(r,s)-tensor Φ\PhiΦ can be locally represented:
Φ(x)=Φj1…jsi1…ir(x)∂∂xi1⊗⋯⊗∂∂xir⊗dxj1⊗⋯⊗dxj\Phi(x)=\Phi^{i_1\dots i_{r}}_{j_1\dots j_s}(x)\frac{\partial}{\partial x^{i_1}}\otimes\dots\otimes\frac{\partial}{\partial x^{i_r}}\otimes dx^{j_1}\otimes\dots\otimes dx^jΦ(x)=Φj1…jsi1…ir(x)∂xi1∂⊗⋯⊗∂xir∂⊗dxj1⊗⋯⊗dxj
Thus for another chart (V,ϕ;x′i)(V,\phi;x'^i)(V,ϕ;x′i), we have the transformation formula on the intersection:
Φj1…jsi1…ir(x′)=Φk1…ksh1…hr(x)∂x′i1∂xh1…∂x′ir∂xhr∂x′k1∂x′j1…∂x′ks∂x′js\Phi^{i_1\dots i_{r}}_{j_1\dots j_s}(x')=\Phi^{h_1\dots h_{r}}_{k_1\dots k_s}(x)\frac{\partial x'^{i_1}}{\partial x^{h_1}}\dots\frac{\partial x'^{i_r}}{\partial x^{h_r}}\frac{\partial x'^{k_1}}{\partial x'^{j_1}}\dots \frac{\partial x'^{k_s}}{\partial x'^{j_s}}Φj1…jsi1…ir(x′)=Φk1…ksh1…hr(x)∂xh1∂x′i1…∂xhr∂x′ir∂x′j1∂x′k1…∂x′js∂x′ks
4.Show that any C∞(M)C^{\infty}(M)C∞(M)-linear map
τ:Λ1(M)×⋯×Λ1(M)⏟s×X(M)×…X(M)⏟r→C∞(M)\tau:\underbrace{\Lambda^1(M)\times\dots\times\Lambda^1(M)}_{s}\times\underbrace{\mathscr{X}(M)\times\dots\mathscr{X}(M)}_r\rightarrow C^{\infty}(M)τ:sΛ1(M)×⋯×Λ1(M)×rX(M)×…X(M)→C∞(M)
can be identified with a (s,r)(s,r)(s,r)-tensor field.
Proof:
We only show the result of (0,1)(0,1)(0,1)-tensor field, for the situation of (r,s)(r,s)(r,s)-tensor can be proved by Cartesian product of every vector field, and it’s too long to write completely.
Suppose we have a linear map τ:X(M)→C∞(M)\tau: \mathscr{X}(M)\rightarrow C^{\infty}(M)τ:X(M)→C∞(M), s.t. ∀v∈X(M)\forall v\in\mathscr{X}(M)∀v∈X(M) and μ∈C∞(M)\mu\in C^{\infty}(M)μ∈C∞(M) we have:
τ(μ⋅v)=μ⋅τ(v)\tau(\mu\cdot v)=\mu\cdot\tau(v)τ(μ⋅v)=μ⋅τ(v)
We need to find out a (0,1)(0,1)(0,1)-tensor field τ~\tilde{\tau}τ~ on MMM, s.t. ∀x0∈M\forall x_0\in M∀x0∈M:
τ~(x0)(X(x0))=(τ(X))(x0),∀X∈X(M)\tilde{\tau}(x_0)(X(x_0))=(\tau(X))(x_0), \forall X\in \mathscr{X}(M)τ~(x0)(X(x0))=(τ(X))(x0),∀X∈X(M)
First, we hvae τ:X(M)→C∞(M)\tau:\mathscr{X}(M)\rightarrow C^{\infty}(M)τ:X(M)→C∞(M) is local defined, X,Y∈X(M)X,Y\in\mathscr{X}(M)X,Y∈X(M), and for open subset U⊂MU\subset MU⊂M, X∣U=Y∣UX|_U=Y|_UX∣U=Y∣U, we have τ(X)∣U=τ(Y)∣U∈C∞(U)\tau(X)|_U=\tau(Y)|_U\in C^{\infty}(U)τ(X)∣U=τ(Y)∣U∈C∞(U):
By the partition of unity, f⋅(X−Y)f\cdot (X-Y)f⋅(X−Y) is a zero vector field on MMM.
τ(0)=τ(0)+τ(0)⇒τ(0)=0\tau(0)=\tau(0)+\tau(0)\Rightarrow \tau(0)=0τ(0)=τ(0)+τ(0)⇒τ(0)=0 on zero vector field.
thus, 0=τ(f⋅(X−Y))=f⋅(τ(X)−τ(Y))0=\tau(f\cdot (X-Y))=f\cdot (\tau(X)-\tau(Y))0=τ(f⋅(X−Y))=f⋅(τ(X)−τ(Y)), thus we do have τ(X)∣U=τ(Y)∣U\tau(X)|_U=\tau(Y)|_Uτ(X)∣U=τ(Y)∣U.
Suppose x0∈(U;xi)x_0\in(U;x^i)x0∈(U;xi) is a chart, and v∈X(U)v\in\mathscr{X}(U)v∈X(U), thus
v=∑ivi∂∂xiv=\sum_iv^i\frac{\partial}{\partial x^i}v=i∑vi∂xi∂
thus, τ(v)=∑ivi⋅τ(∂∂xi)\tau(v)=\sum_iv^i\cdot\tau(\frac{\partial}{\partial x^i})τ(v)=∑ivi⋅τ(∂xi∂)
Then, we can define τ~(x0)∈Tx0∗M\tilde{\tau}(x_0)\in T^*_{x_0}Mτ~(x0)∈Tx0∗M for x0∈Mx_0\in Mx0∈M:
∀v0∈Tx0M\forall v_0\in T_{x_0}M∀v0∈Tx0M, v∈X(U)v\in\mathscr{X}(U)v∈X(U) is a extension of v0v_0v0 at UUU whcih contains x0x_0x0 , s.t. v(x0)=v0v(x_0)=v_0v(x0)=v0, and
(τ~(x0))(v0)=(τ(v))(x0)(\tilde{\tau}(x_0))(v_0)=(\tau(v))(x_0)(τ~(x0))(v0)=(τ(v))(x0)
and τ~(x0):Tx0M→R\tilde{\tau}(x_0):T_{x_0}M\rightarrow \mathbb{R}τ~(x0):Tx0M→R is linear, thus τ~(x0)∈Tx0∗M\tilde{\tau}(x_0)\in T^*_{x_0}Mτ~(x0)∈Tx0∗M.
In (U;xi)(U;x^i)(U;xi), we have:
τ~∣U=∑i=1mτ~(∂∂xi)dxi\tilde{\tau}|_U=\sum^m_{i=1}\tilde{\tau}(\frac{\partial}{\partial x^i})dx^iτ~∣U=i=1∑mτ~(∂xi∂)dxi
τ~(∂∂xi)(x0)=τ~(x0)(∂∂xi)=τ(∂∂xi)(x0),∀x0∈U\tilde{\tau}(\frac{\partial}{\partial x^i})(x_0)=\tilde{\tau}(x_0)(\frac{\partial}{\partial x^i})=\tau(\frac{\partial}{\partial x^i})(x_0), \forall x_0\in Uτ~(∂xi∂)(x0)=τ~(x0)(∂xi∂)=τ(∂xi∂)(x0),∀x0∈U
Thus,
τ~(∂∂xi)=τ(∂∂xi)∈C∞(U)\tilde{\tau}(\frac{\partial}{\partial x^i})=\tau(\frac{\partial}{\partial x^i})\in C^{\infty}(U)τ~(∂xi∂)=τ(∂xi∂)∈C∞(U)
thus τ~\tilde{\tau}τ~ is cotangent vector field, and ∀v∈X(M)\forall v\in \mathscr{X}(M)∀v∈X(M), we have τ~(v)=τ(v)\tilde{\tau}(v)=\tau(v)τ~(v)=τ(v)