MATLAB R2016a 无法启动并行池

本文详述了MATLAB R2016a中parfor并行计算功能突然失效的问题排查与解决流程,包括检查license、匹配版本、清除localschedulerdata等关键步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在用 MATLAB 跑仿真,但是不知怎么回事,之前并行计算 parfor 用的好好的,昨天突然就不能用了,一直报错无法启动并行池,报错原因还特别奇怪。在网上找了一大堆教程互相抄来抄去,没一个能用的。最后还是在官网论坛找到了一个答案成功解决问题。

先给我的博客打个广告,欢迎光临
https://glooow1024.github.io/
https://glooow.gitee.io/

1. 问题描述

我用的是 MATLAB R2016a,当我运行带有 parfor 的代码时,左下角会有如下提示,表示无法启动并行池,而正常情况应该是右边这幅图

报错情况正常情况
在这里插入图片描述在这里插入图片描述

当我点击查看 more details 时,会报如下的错误,参数不对?这不是自带函数吗?

在这里插入图片描述

然后我参考了网上的教程,查看 Home->Parallel->Manage Cluster Profiles,但是网上教程说如果是下面这个样子

我的错误是这样的网上只有这样的
在这里插入图片描述在这里插入图片描述

很显然我的第一步 cluster connection test(parcluster) 就 fail 了,我按照网上的说法运行下面这句话也没用

distcomp.feature( 'LocalUseMpiexec', false )

最后幸运的是在官网论坛找到了一篇可以解决我的问题的回答,下面给出解决方法。

2. 解决方法

参考链接:https://www.mathworks.com/matlabcentral/answers/92124-why-am-i-unable-to-use-parpool-with-the-local-scheduler-or-validate-my-local-configuration-of-parall

我用 第 5 步(Clear the local scheduler data folder) 解决了我的问题,不过下面还是贴出来完整的 debug 过程

2.1 检查 license

运行命令检查 Parallel Computing Toolbox 的 license 正确

license checkout Distrib_Computing_Toolbox

如果得到的回答是 ans=1,则说明 license 没问题。否则需要添加 license。

2.2 确保你的 MATLAB 版本与 PCT 版本匹配

运行命令 ver 查看,如果不匹配则无法使用。这种情况 … 建议重装。

2.3 Disable local mpiexec

运行下面的命令

distcomp.feature( 'LocalUseMpiexec', false )

这也是网上绝大部分教程的方法,不过对我就不适用,如果对你也不适用的话,往下继续看。

2.4 Check your local scheduler configuration

这一部分我贴出原文吧,大概是说如果你修改了默认配置,则可以重置他们。

There are no changes that need to be made in order to use the local scheduler, but if you have made changes to the configuration, you may want to reset these. This can be done by creating a new local scheduler configuration. To do so,

  1. Go to the Parallel menu in MATLAB and select “Manage Cluster Profiles…” (“Manage Configurations…” for R2011b or earlier)
  2. Click on Add > Custom > Local (for older releases: From the File menu, select New > Local Configuration)
  3. Click the radio option in the default column to set this as the default configuration

Once complete, close the Manage Configuration windows and try again.

2.5 Clear the local scheduler data folder

出现无法启动并行池的原因也可能是本地的 local scheduler data 有问题,可以把他删除。删除的步骤为

  1. 运行命令

    >>prefdir
    ans =
    C:\Users\Administrator\AppData\Roaming\MathWorks\MATLAB\R2016a
    

    然后我们就可以在路径 C:\Users\Administrator\AppData\Roaming\MathWorks\MATLAB 下面找到文件夹 local_scheduler_data 或者 local_cluster_jobs

  2. 关闭 MATLAB

  3. 将上面的文件夹 local_scheduler_data 或者 local_cluster_jobs 重命名或者直接删除

  4. 重启 MATLAB,试着开启并行池

我做完这一步就能解决问题了,如果还不行,原文还给出了其他可能的原因,后面的我就直接贴出来原文了。

2.6 Ensure that hostname resolution works on your computer

In order to use the local scheduler, your computer’s own hostname must be resolvable. To confirm this, run the following command in MATLAB:

!hostname

This will give you your computer’s hostname. You must be able to resolve this hostname to the computer’s IP address. To test this you can run:

!ping <hostname>

Where is the output of the hostname command above. If the results indicate the wrong IP address or say that your computer is an “unknown host”, there is a network issue on your computer that needs to be resolved in order to use the local scheduler. In that case, ask your network administrator for help.

2.7 Check to see if you have a startup.m file on the MATLAB path

It may be causing an error, even if it works fine in MATLAB when run as code.

To see if you have a startup.m file on the MATLAB path run the below command in MATLAB:

which startup.m

Either delete or move that file outside of the MATLAB path.

If you are still unable to run parpool, run a validation of your local scheduler configuration and submit this to support. To validate:

  1. Go to the Parallel menu in MATLAB and select “Manage Cluster Profiles…” (“Manage Configurations…” for R2011b or earlier)
  2. Highlight your local scheduler configuration and click the “Validate” button (“Start Validation” for R201b or earlier)
  3. Once the validation completes, click the “details” link to see the results

You can then forward your output of validation, the results of the tests below, and your license number to support here: http://www.mathworks.com/support/contact_us/index.html

<think>好的,用户现在提到他们使用的是MATLABR2016a版本,这会影响之前提供的代码的兼容性。我需要检查之前提供的代码中是否有使用到R2016a之后引入的函数或特性,并给出相应的替代方案。首先,回顾之前提供的代码,特别是最近一次关于人工神经网络故障诊断模型的回答。其中可能使用了较新的函数,如trainNetwork、LSTM层、trainingOptions等,这些在R2016a可能不可用。因为DeepLearning Toolbox在R2016a中的功能较为有限,特别是对于LSTM层和训练选项的设置可能不同。接下来,需要确定用户的具体需求。用户可能希望调整之前的ANN故障诊断代码,使其兼容R2016a版本。需要替换掉不支持的函数,例如用传统的神经网络工具箱(PatternRecognition Toolbox)代替DeepLearning Toolbox中的函数。同时,数据生成、预处理和特征提取部分可能需要调整,确保使用的函数在R2016a中存在。 然后,考虑R2016a中可用的神经网络工具。在R2016a中,可以使用feedforwardnet、patternnet等函数来构建前馈神经网络,而LSTM可能无法直接使用。因此,需要将模型结构从LSTM改为传统的前馈网络,并调整数据输入格式以适应静态特征而非时间序列。另外,用户可能遇到的其他兼容性问题包括并行处理(parfor中的某些用法)、数据增强方法中的函数是否可用,以及绘图函数的变化。需要逐一检查代码中的每个函数,确认它们在R2016a中的可用性,并提供替代方案。最后,需要确保提供的替代代码能够完成相同的故障诊断任务,同时保持逻辑一致性和功能完整性。可能需要简化模型结构,使用传统的ANN而不是混合模型,并调整训练参数以适应旧版本的工具箱。</think>在MATLAB R2016a环境下开发故障诊断系统时,需注意版本兼容性问题。以下是针对R2016a的改进方案和注意事项: **1. 神经网络实现调整(兼容R2016a的代码):** ```matlab %% 兼容R2016a的ANN实现 function ann_r2016a() % 数据生成 [inputs, targets] = generate_data(); % 创建网络 net = patternnet([20 15]); % 双隐藏层结构 % 配置参数 net.divideFcn = 'dividerand'; net.divideParam.trainRatio = 0.7; net.divideParam.valRatio = 0.15; net.divideParam.testRatio = 0.15; % 训练网络 [net, tr] = train(net, inputs, targets); % 测试网络 outputs = net(inputs(:,tr.testInd)); plotconfusion(targets(:,tr.testInd), outputs) end function [inputs, targets] = generate_data() % 生成500个样本,8个特征,4种故障类型 num_samples = 500; inputs = rand(8, num_samples); % 8个特征 targets = zeros(4, num_samples); % 随机分配故障类型 for i = 1:num_samples fault_type = randi(4); targets(fault_type, i) = 1; end end ``` **2. 版本差异解决方案:** | 功能需求 | R2016a实现方案 | 新版本替代方案 | |----------------|-----------------------------|-----------------------| | 神经网络构建 | patternnet + train | trainNetwork | | 数据可视化 | plotconfusion | confusionchart | | 数据预处理 | mapminmax | normalize | | 并行计算 | matlabpool (已弃用) | parpool | **3. 关键兼容性问题处理:** ```matlab % 数据归一化处理(兼容方案) [input_norm, settings] = mapminmax(inputs); % 替代新版代码: % input_norm = normalize(inputs); ``` **4. 推荐功能替代方案:** ```matlab % 特征重要性分析(R2016a实现) function analyze_weights(net) % 获取第一隐藏层权重 iw = net.IW{1}; % 计算特征重要性 importance = mean(abs(iw), 1); % 可视化 bar(importance) title('输入特征重要性分析') xlabel('特征索引') ylabel('平均权重绝对值') end ``` **升级建议:** 1. 时序数据处理建议改用ARIMA模型替代LSTM: ```matlab % 创建ARIMA模型 model = arima('ARLags',1:2,'D',1,'MALags',1); fit = estimate(model, sensor_data); ``` 2. 特征工程建议使用传统方法: ```matlab % 时域特征提取(兼容方案) function features = time_domain_features(data) features = [mean(data,2), std(data,[],2), ... max(data,[],2)-min(data,[],2), ... skewness(data,0,2), kurtosis(data,0,2)]; end ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值