不考虑横向运动时,我们可以把四足机器人的腿部简单看成一个二连杆结构,这节我们就来讲解如何调整离地高度的问题
一、几何模型
我们可以把机器人的一条腿简化成以下形状,由两根连杆组成,α\alphaα为髋关节角度,β\betaβ为膝关节角度。

二、几何逆解
我们假定足端与髋关节原点保持竖直关系,根据几何关系,已知离地高度hhh,求θ1,θ2\theta_1, \theta_2θ1,θ2
θ1=arccos(l12+h2−l222l1h)γ=arccos(−l12+L2+l222hl2)θ2=θ1+γ\begin{matrix} \theta_1 =& \arccos{\left(\frac{l_1^2 + h^2 -l_2^2}{2l_1h} \right)}\\ \\ \gamma = & \arccos{\left(\frac{- l_1^{2} + L^{2} + l_{2}^{2}}{2 h l_{2}} \right)} \\\\ \theta_2 =& \theta_1 + \gamma \end{matrix}θ1=γ=θ2=arccos(2l