转置、置换、向量空间
置换(permutations)
P 矩阵,用来执行行置换
A = LU 变成了 PA = LU
- 置换矩阵是重新排序了的单位矩阵
- 一个有 n!种单位矩阵(n为矩阵阶数)
- P的转置就是P的逆
转置
例子
符号语言
AijT=Aji A^{T}_{ij} = A_{ji} AijT=Aji
对称矩阵
A的转置与A相同
对称矩阵要比上述转置矩阵要常见得多
构造对称矩阵
有:
RTR永远是一个对称矩阵R^TR永远是一个对称矩阵RTR永远是一个对称矩阵
我们看一下怎么取的转置
(RTR)T=RTRTT=RTR(R^TR)^T = R^TR^{TT} = R^TR(RTR)T=RTRTT=RTR
向量空间
所有向量都必须在空间内,比如R2空间内R^2空间内R2空间内
所有点都必须存在
因为必须满足 加法 和 乘法
所以现在的目标是找到一个 子空间 满足向量空间的性质
一个很好的例子就是直线,这样一条直线(过零点),就是很好的一个子向量空间
在R2R^2R2 空间内,共有三个子向量空间:
- R2R^2R2自己
- 任何包含零向量的直线
- 零向量自己
在R3R^3R3 空间内,共有四个子向量空间:
- R3R^3R3自己
- 任何包含零向量的直线
- 任何包含零向量的平面
- 零向量自己
通过矩阵找出子向量空间
列空间(column space)
通过矩阵列的所有线性组合 即可得到最后子向量空间