线性代数MIT 18.06 记录(五)转置、置换、向量空间

本文探讨了矩阵的置换、转置及对称性,详细解释了置换矩阵P如何改变矩阵分解,即从A=LU变为PA=LU。此外,还深入介绍了转置的概念及其在构造对称矩阵中的应用,并讨论了向量空间的基本属性,包括子空间的定义和如何通过矩阵的列空间找到这些子空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转置、置换、向量空间

置换(permutations)

P 矩阵,用来执行行置换
A = LU 变成了 PA = LU

  • 置换矩阵是重新排序了的单位矩阵
  • 一个有 n!种单位矩阵(n为矩阵阶数)
  • P的转置就是P的逆

转置

例子

在这里插入图片描述

符号语言

AijT=Aji A^{T}_{ij} = A_{ji} AijT=Aji

对称矩阵

A的转置与A相同

对称矩阵要比上述转置矩阵要常见得多

构造对称矩阵

有:
RTR永远是一个对称矩阵R^TR永远是一个对称矩阵RTR
我们看一下怎么取的转置
(RTR)T=RTRTT=RTR(R^TR)^T = R^TR^{TT} = R^TR(RTR)T=RTRTT=RTR

向量空间

所有向量都必须在空间内,比如R2空间内R^2空间内R2
所有点都必须存在
因为必须满足 加法 和 乘法
所以现在的目标是找到一个 子空间 满足向量空间的性质
在这里插入图片描述
一个很好的例子就是直线,这样一条直线(过零点),就是很好的一个子向量空间
R2R^2R2 空间内,共有三个子向量空间:

  1. R2R^2R2自己
  2. 任何包含零向量的直线
  3. 零向量自己

R3R^3R3 空间内,共有四个子向量空间:

  1. R3R^3R3自己
  2. 任何包含零向量的直线
  3. 任何包含零向量的平面
  4. 零向量自己

通过矩阵找出子向量空间

列空间(column space)

通过矩阵列的所有线性组合 即可得到最后子向量空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值