线性代数MIT 18.06 记录(十六)投影矩阵和最小二乘

本文深入探讨投影矩阵的概念,包括特殊情况下的投影行为,如当向量位于矩阵的列空间或与其垂直时的情况。此外,还讨论了投影矩阵的一般性质,如对称性和平方不变性,并介绍了如何通过最小化误差来寻找最佳投影,特别关注离群值的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

投影矩阵

在这里插入图片描述

特殊情况

我们考虑上面这个特殊情况,可以看到,如果b在A的列空间内,那么投影就是自己,如果b垂直于A,那么投影就是零,这都很好证明

**注:**A的列空间的线性组合可以表示为AxAxAx,同理,行的线性组合可以表示为 xAxAxA

一般情况

在这里插入图片描述
这里可以看到,P是一个投影矩阵,I-P也是,它是指定平面对角平面的投影矩阵,对称性,平方不变性依旧满足

应用

问题描述

在这里插入图片描述

找到最优解

首先,定义误差:
在这里插入图片描述
找到这个的最小值就好啦

离群量outliners:坏的数据

解下面的方程:

另一个角度:
在这里插入图片描述
在这里插入图片描述

下面的方程,就是上面分别对C和D求偏导,太牛逼了

殊途同归

最终结构

在这里插入图片描述

重要事实

在这里插入图片描述
只有ATAA^TAATA可逆,才有上面的故事

巧妙的证明方法
在这里插入图片描述

下节课,标准正交化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值