多标签分类算法

本文探讨了多标签分类的策略,包括第一、第二和高阶相关性的分类方法,并介绍了评估指标,如基于实例和标签的评估方式。学习算法包括问题转换(如二元关联、分类器链、LP法)、自适应算法(如随机森林、岭回归)和集成方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文图片摘自https://www.zhihu.com/question/35486862景略集智的回答。


分类策略:基于标签的order of correlations

  1. first-order strategy:逐一考察单个标记而忽略标记之间的相关性,如将多标记学习问题分解为个独立的二类分类问题,从而构造多标记学习系统。该类方法效率较高且实现简单,但由于其完全忽略标记之间可能存在的相关性,其系统的泛化性能往往较低。
  2. second-order strategy:考察两两标记之间的相关性,如相关标记与无关标记之间的排序关系,两两标记之间的交互关系等等,从而构造多标记学习系统。该类方法由于在一定程度上考察了标记之间的相关性,因此其系统泛化性能较优。
  3. high-order strategy:考察高阶的标记相关性,如处理任一标记对其它所有标记的影响,处理一组随机标记集合的相关性等等,从而构造多标记学习系统。该类方法虽然可以较好地反映真实世界问题的标记相关性,但其模型复杂度往往过高,难以处理大规模学习问题。

摘自:https://www.zhihu.com/question/35486862国双商业市场的回答


评估指标:

  1. Example-based: Evaluating the learning system’s performance on
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值