26.3.1 开启CAP_SYS_NICE

在Linux环境中,为了使用资源组功能,MySQL需要CAP_SYS_NICE权限。通过检查进程信息,发现mysqld未开启此权限。通过特定命令为MySQL赋予CAP_SYS_NICE权限后,再次确认,MySQL已成功开启该权限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

26.3.1 开启CAP_SYS_NICE

在Linux操作系统上,MySQL需要开启CAP_SYS_NICE特性才能使用资源组。首先查看MySQL的运行进程信息。


[root@binghe150 ~]# ps -ef | grep mysql
root       1397      1  0 08:52 ?        00:00:00 /bin/sh /usr/local/mysql/bin/mysqld_safe --datadir=
/data/mysql/data --pid-file=/data/mysql/data/binghe150.pid
mysql      2386   1397  0 08:52 ?        00:01:36 /usr/local/mysql/bin/mysqld --basedir=/usr/local/
mysql --datadir=/data/mysql/data --plugin-dir=/usr/local/mysql/lib/plugin --user=mysql --log-
error=/var/log/mysqld.log --open-files-limit=65535 --pid-file=/data/mysql/data/binghe150.pid --socket=
/data/mysql/run/mysql.sock --port=3306
root       3234   2468  0 13:33 pts/1    00:00:00 grep mysql

从输出结果

<think>好的,我需要检查用户提供的这段DATA代码是否存在问题。首先,用户使用的是类似数学建模或优化软件(如LINGO)的数据格式,但可能对语法不太熟悉。让我逐步分析各个部分。 首先看数据段的开始部分,用户用“DATA:”和“ENDDATA”包裹数据,这符合常见建模软件的语法。接下来是运输距离的数据,例如transport_rc_dc_dist等矩阵。这些矩阵的行列数需要确认是否一致。比如transport_rc_dc_dist有11行,每行10个数值,可能代表11个收集点到10个检测中心的距离。但需要检查每行是否都有正确的数值数量,避免缺失或多余。 接下来是transport_dc_pc_dist,有6行,每行11个数值,这可能对应6个检测中心到11个处理中心的距离。然后是transport_pc_wc_dist,4行6列,可能表示4个处理中心到6个仓库的距离。需要确认这些维度是否符合实际需求,比如是否每个节点的连接都有对应的距离值。 然后是回收量数据recycle_amount,显示为2行5列,这可能代表两个区域,每个区域5个回收量?或者可能是输入错误,比如应该是10个区域对应前面的节点数?这里可能存在数据维度不匹配的问题,因为前面的运输矩阵可能涉及更多节点,而回收量数据可能不足以覆盖所有区域,导致后续模型运行时数据索引越界。 成本参数部分,用户是否正确使用了变量名?例如construct_cost_detect和construct_cost_process,这些是否在模型中正确引用。另外,数值是否正确,比如运输成本transport_cost_per_ton_km是0.424,单位是否是每吨公里,这需要确认是否符合实际计算需求。 标点符号方面,用户在每个数据赋值后使用了分号,这是正确的。但需要注意是否有遗漏的分号,尤其是在矩阵数据结束后。例如,transport_rc_dc_dist的最后一个数值后面是否有分号?检查代码发现transport_pc_wc_dist的数据结束后有分号,其他矩阵也是如此,所以标点正确。 注释部分使用“!”是正确的,但需确认注释是否被正确解析,不会影响数据读取。此外,变量名中的下划线是否符合软件要求,是否存在保留字冲突。 总结问题点:回收量数据可能维度不正确,行数或列数与运输矩阵不匹配。比如,假设有10个区域,但recycle_amount是2行5列,总共有10个数据点,但排列方式可能导致模型引用时出错,需要调整为110列或10行1列,具体取决于模型如何使用这些数据。此外,需确认所有矩阵的行列数是否符合模型中定义的集合维度,例如,如果检测中心有10个,处理中心6个,那么transport_dc_pc_dist的行数应为10,每行对应一个检测中心到各处理中心的距离,但当前transport_dc_pc_dist有6行,可能行列颠倒了,导致维度错误。 另外,transport_rc_dc_dist有11行,可能对应11个回收中心到10个检测中心,而transport_dc_pc_dist是6行11列,可能意味着6个检测中心到11个处理中心,但若前面检测中心是10个,这里6行就会不匹配。因此,数据维度存在不一致,需要根据模型的实际结构进行调整,确保每个运输距离矩阵的行列数对应正确的节点数量。</think>通过分析您提供的数据代码,发现存在以下关键问题需要修正: 1. **回收量维度不匹配** - `recycle_amount`当前为2行×5列(共10个数据),建议调整为1行×10列: ```ampl recycle_amount = 19150.61 17749.34 12144.29 4670.88 27324.65 11677.20 17282.25 3036.07 3736.70 5371.51; ``` 2. **运输矩阵行列数矛盾** - `transport_rc_dc_dist`为11行×10列 → 应表示11个回收中心到10个检测中心 - `transport_dc_pc_dist`为6行×11列 → 检测中心数量突变为6个(与前述10个冲突) - `transport_pc_wc_dist`为4行×6列 → 处理中心数量应为4个,仓库为6个 **需确认节点数量一致性**,典型匹配方式应为: ``` RC(回收中心) × DC(检测中心) → 11×10 DC × PC(处理中心) → 10×6 PC × WC(仓库) → 6×4 ``` 3. **语法增强建议** - 添加维度声明(以LINGO为例): ```lingo SETS: RC /1..11/, DC /1..10/, PC /1..6/, WC /1..4/; ENDSETS DATA: transport_rc_dc_dist = @OLE(&#39;data.xlsx&#39;); !推荐Excel链接; ENDDATA ``` - 拆分密集数据提升可读性: ```lingo transport_rc_dc_dist = 25.6 24.9 28.9 54.6 31.9 57.8 99.5 104.1 23.6 32.2 18.9 13.6 18 20.8 17 44.3 70.2 81.6 67.3 76.1 ...(其余数据); ``` **修正重点**:需根据实际业务场景核对节点数量,确保运输矩阵维度与节点集合定义完全一致。建议通过集合声明明确维度关系,并采用Excel等外部数据源避免手动输入错误。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值