图像语义分割论文(四)BiSeNet V2

本文提供手把手视频教程,详细解析BiSeNet和BiSeNetV2在实时语义分割中的应用。这两种模型在保持高精度的同时,具备良好的实时性能,但CPU运行效率较低。教程涵盖输入、模型构建和输出的实现步骤,并探讨了实时语义分割的三种主要思路:高效backbone、多分支权衡和高精度上采样模块设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 视频讲解,转移至西瓜视频主页:@智能之心


手把手视频讲解+代码讲解

[1.如何实现输入(完全免费解析直达,致力干货分享)]

[2.如何实现模型(完全免费解析直达,致力干货分享)]

[3.如何实现输出(完全免费解析直达,致力干货分享)]

BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation

总结:精度不错,实时性也好,但是在CPU上不理想(200ms)

技巧:多分支+高精度上采样+多头监督

目前实时语义分割主要包含三种思路,1、采用高效backbone;2、利用多分支来在速度和精度上取权衡;3、通过设计高精度的上采样模块来获得高分辨率的预测。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能之心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值