C# 打开摄像头

本文介绍了如何在C#项目中通过Nuget管理器安装OpenCcSharp3-AnyCPU库,从而实现打开和操作摄像头的功能,特别是对于RTSP流的支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.新建C#项目

2.在项目上右键选择管理Nuget程序包,如下安装OpenCcSharp3-AnyCPU.

 

using OpenCvSharp;
using OpenCvSharp.Blob;
using OpenCvSharp.UserInterface;
using OpenCvSharp.Extensions;

 private void CaptureCameraCallback()
        {
            Mat frame = new Mat();
            //videocapture后面参数为0表示获取电脑本机摄像头的内容
            //如果输入rtsp地址就是获取网络摄像头的拍摄内容,rtsp地址可由摄像头厂家提供
            //已大华为例 rtsp://用户名:密码@ip:port
            capture = new VideoCapture(this.textBoxUrl.Text.Trim());
            int sleeptime = (int)Math.Round(1000 / capture.Fps);
            while (isCameraRunning)
            {
                capture.Read(frame);
                if (frame.Empty())
                {
                    break;
                }
                Bitmap image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(frame);
                if (pictureBox1.Image != null)
                {
                    pictureBox1.Image.Dispose();
                }
                pictureBox1.Image = image;
                Cv2.WaitKey(sleeptime);
            }
        }

C#中使用摄像头进行人脸识别通常涉及到计算机视觉和深度学习技术,比如OpenCV或Windows Media Foundation库。这里我会提供一个简单的步骤来帮助你入门: **使用Windows.Media.Cameras库(适用于WinForms):** 1. 首先确保安装了.NET Framework库。 2. 创建一个新的Windows Forms项目。 3. 添加`Windows.Media.Cameras`命名空间。 4. 在Form Load事件中初始化相机: ```csharp using Windows.Media.Cameras; private CameraDeviceManager _deviceManager; public Form1() { InitializeComponent(); _deviceManager = new CameraDeviceManager(); _deviceManager.CameraCaptureUIOpening += DeviceManager_CameraCaptureUIOpening; } void DeviceManager_CameraCaptureUIOpening(CameraDeviceManager sender, CameraCaptureUIClosingEventArgs args) { // 选择默认摄像头 var camera = _deviceManager.GetDefaultCamera(); if (camera != null) { args.OpenedCamera = camera; } else { MessageBox.Show("No camera found."); return; } } ``` 5. 创建一个Preview显示区,然后处理视频流中的帧,这可能需要用到图像处理库来检测人脸。 **使用OpenCV(跨平台):** 1. 安装OpenCV for .NET(https://docs.opencv.org/4.6.0/d9/dde/tutorial_windows_install.html) 2. 引入`OpenCvSharp`库: ```csharp using Emgu.CV; using Emgu.CV.Structure; using System.Drawing; ``` 3. 获取摄像头设备并设置回调函数来获取实时帧: ```csharp private Capture _capture; private Mat frame; public Form1() { _capture = new Capture(0); // 使用默认摄像头 _capture.NewFrame += Capture_NewFrame; } void Capture_NewFrame(object sender, EventArgs e) { frame = _capture.QueryFrame(); // 获取帧 // 这里你可以用Haar Cascades或者Dnn(深度学习模型)识别人脸 // 示例: var gray = new Mat(frame.Size(), CvType.CV_8UC1); CvInvoke.CvtColor(frame, gray, ColorConversion.Bgr2Gray); // 加载预训练的人脸分类器 var classifier = HaarCascadeClassifier.Create("haarcascade_frontalface_default.xml"); var faces = classifier.DetectMultiScale(gray, 1.1, 4); // 参数调整以优化结果 foreach (var face in faces) { // 绘制人脸矩形 rectangle(frame, face, new MCvScalar(255, 0, 0), 2); } // 将Opencv Mat转换为System.Drawing.Image var bitmap = new Bitmap(frame.Width, frame.Height); CvInvoke.Imwrite(bitmap, frame); pictureBox1.Image = bitmap; // 显示到PictureBox } ``` 请注意,以上示例并没有包含人脸识别的具体算法,你需要下载一个适合的预训练模型(如Haar Cascade分类器或DNN模型),并将它们集成到上述代码中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_41280091

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值