图像分割

图像分割是将图像划分为多个互不重叠的区域,通过阈值、边缘检测、区域生长等方法实现。基于阈值的方法依赖于合适的阈值选择;边缘检测利用一阶和二阶导数检测图像边缘;区域生长从种子点开始扩张,满足特定条件。图像分割的目标包括普通分割、语义分割和实例分割。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像分割是指将图像分成若干互不重叠的子区域,使得同一个子区域内的特征具有一定相似性,不同子区域的特征呈现较为明显的差异。
在这里插入图片描述
常用方法
1.基于阈值的分割方法
2.基于边缘检测的分割方法
3.基于区域的分割方法
4.基于深度学习的分割方法

1.基于阈值的分割方法
基本思想:首先,确定一个合适的阈值T(阈值选定的好坏是此方法成败的关键);其次,将大于等于阈值的像素作为物体或背景,生成一个二值图像。
(基于图的灰度直方图)
在这里插入图片描述
在这里插入图片描述
2.基于边缘检测的分割方法
基本思想:计算局部微分算子

一阶导数:用梯度算子来计算
用途:用于检测图像中边的存在
二阶导数:通过拉普拉斯算子来计算
用途:
1)二阶导数的符号,用于确定边上的像素是在亮的一边,还是暗的一边。
2)二阶导数的零交叉点用于确定边缘的中心。
在这里插入图片描述
3、区域生长
算法实现:
1)根据图像的不同应用选

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值