PAT-L2-023 图着色问题 (25分)-简单的图遍历问题

本文介绍了一种用于验证图着色问题解的算法。给定一个无向图和一组颜色分配,算法通过构建邻接链表并遍历每个顶点来检查其颜色是否与其邻居颜色冲突。该算法确保了每个顶点的颜色与其相邻顶点的颜色不相同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图着色问题是一个著名的NP完全问题。给定无向图G=(V,E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?

但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。

输入格式:
输入在第一行给出3个整数V(0<V≤500)、E(≥0)和K(0<K≤V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(≤20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。

输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出Yes,否则输出No,每句占一行。

输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4

输出样例:
Yes
Yes
No
No

本题实际上就是判断每一个点和周围点的颜色是否有一样的,所以用邻接链表存储一下,然后遍历即可

//@author:hairu,wu
//@from:ahut
#include<iostream>
#include<vector>
#include<memory.h>
#include<set>
using namespace std;
const int max_n=1e3;

int color[max_n];//存储点的颜色 
int v,e,k;//顶点,边,颜色数 
vector<int> edges[max_n];//存储边的信息


bool check(){
	//检查每个点周围的点是否符合条件
	bool flag=true;
	for(int i=1;i<=v;i++){
		for(int j=0;j<edges[i].size();j++){
			int next=edges[i][j];//临界点
			if(color[i]==color[next]){
				flag=false;
				//cout<<i<<" "<<color[i]<<" "<<next<<" "<<color[next]<<endl;
				break;
			} 
		}
		if(flag==false) break;
	} 
	return flag; 
}

int main(){
	cin >> v>>e>>k;
	for(int i=0;i<e;i++){
		int x,y;
		cin >> x>>y;
		edges[x].push_back(y);
		edges[y].push_back(x);
	} 
	int n;
	cin >> n;
	for(int i=0;i<n;i++){
		memset(color,0,sizeof(color));
		set<int> s;
		for(int j=1;j<=v;j++){
			cin>>color[j];//输入点的颜色 
			s.insert(color[j]);
		}
		if(s.size()!=k){
			cout<<"No"<<endl;
			continue;
		}
		if(check()){
			//如果颜色都不同
			cout<<"Yes"<<endl; 
		}else{
			cout<<"No"<<endl;
		}
	}
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小吴同学GOGOGO

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值