MapReduce中自定义InputFormat,处理输入小文件的问题,输出时使用SequenceFileOutPutFormat合并文件

本文介绍了在MapReduce中如何通过自定义InputFormat来解决处理大量小文件的效率问题。通过将多个小文件合并成一个SequenceFile,实现了文件的高效存储。详细讲述了实现步骤,包括自定义FileInputFormat子类,RecordReader的改造,以及使用SequenceFileOutPutFormat进行文件合并。最终,成功将小文件转化为二进制形式的SequenceFile。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.需求

         无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决             方案。将多个小文件合并成一个SequenceFile文件(SequenceFile文件是Hadoop用来存储二进制形式的key-value对的文件            格式),SequenceFile里面存储着多个文件,存储的形式为文件路径+名称为key,文件内容为value。

2.具体实现

(1)自定义一个类继承FileInputFormat

(2)改写RecordReader,实现一次读取一个完整文件封装为KV

(3)在输出时使用SequenceFileOutPutFormat输出合并文件

3.代码实现

(1)创建Mavenue工程,pom.xml如下:

    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>RELEASE</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>2.8.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.7.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>2.7.2</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.7.2</version>
        </dependency>
    </dependencies>

log4j.properties

log4j.rootLogger=info, stdout
log4j.appende
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值