推荐系统1--协同过滤

本文深入探讨协同过滤算法,包括UserCF和ItemCF的基本思想、实现方法、应用场景及其优缺点。UserCF通过寻找兴趣相似的用户进行推荐,适合实时性强、社交性强的场景;而ItemCF则基于物品相似性推荐,适用于用户兴趣稳定的场景。协同过滤存在稀疏性问题,后续发展出了矩阵分解等技术以增强泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,协同过滤是什么?

基本思想是:根据用户历史喜好,以及与给用户兴趣相近的用户的选择,来给用户推荐物品
(基于对用户历史行为数据的挖掘发现用户的喜好偏向,并预测用户可能喜好的产品进行推荐)
一般仅仅依靠用户的行为数据(评价,购买,下载等),不依赖于物品自身特征或者用户的附加信息(年龄,性别等)

二,协同过滤的分类

  • 基于用户的协同过滤算法(UserCF):给用户推荐与他兴趣相似的其他用户喜欢的产品
  • 基于物品的协同过滤算法(ItemCF):给用户推荐与他之前喜欢的物品相似的物品

三,基于用户协同过滤应用场景

3.1 UserCF 基本思想
当一个用户A需要个性化推荐时,可以找到与该用户兴趣相似的用户。将这些用户喜欢,而A没有听说过的产品推荐给用户A
3.2 基本实现方法
图1:用户对物品的打分情况在这里插入图片描述
给用户推荐物品的过程可以形象化为:预测一个用户对商品进行打分的任务
表格中5个用户对5件物品的打分情况,可以理解为用户对物品的喜欢程度(打分情况是怎么得到的?是根据用户的行为进行统计得到的。比如用户购买了某个物品,直接量化成5分,用户收藏了某个物品,量化为4分,用户看某个物品很久量化为3分等)
基于上面的数据,来预测Alice 对物品5的打分,一共需要以下几个步骤
1)计算Alice与用户1,2,3,4 的相似度。衡量标准:皮尔逊相关系数
目的:找到与Alice 相似度最高的top_N的用户
在这里插入图片描述
在这里插入图片描述取top n 的用户,n=2,则与Alice最相近的两个用户是用户1,与Alice 的相似度是0.85;用户2,与Alice的相似度是0.7

2)根据相似度用户计算Alice 对物品5的最终得分
用户1对物品5评分是3,用户2对物品5评分是5,则Alice对物品5的最终得分是
在这里插入图片描述
3)根据用户评分对用户进行推荐
Al

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值