R语言应用-1:数据整理

基础篇----R环境安装及基本语句:

(65条消息) windows 下载 R 和 R studio,以及R语言基本使用_up_xin的博客-CSDN博客https://blog.csdn.net/weixin_41427508/article/details/128148008?spm=1001.2014.3001.5502

目录

一. 数据整理 -- tidyverse包

1. 数据导入导出及读取

2. 类似数据库操作:mutate新建变量、filter/select 过滤行/列、summary+group_by分组汇总、4种join数据合并 (管道操作符:前结果可作为后参数)

3. seperate/unite 列的分裂/合并,pivot_longer/wider 长宽数据转换

二. 可视化作图

三. 统计应用


一. 数据整理 -- tidyverse包

1. 数据导入导出及读取

# 数据操作
library(tidyverse)
# https://www.tidyverse.org/

# csv 数据导入
rawdata <- read.table(file.choose(), header=T, sep=",")
head(rawdata, n=4)
tail(rawdata, n=10)
rawdata[95:105,]
str(rawdata)
# read.csv(file.choose())
# data.table::fread(file.choose())

# csv 数据导出
write.table(rawdata,
            "test.csv",
            sep=",",
            row.names=F)
# write.csv()
# data.table::fwrite()

# 读取excel表
library(readxl)
# excel_sheets(file.choose())
datal <- read_excel(file.choose())

# 批量读取数据
files <- list.files(".\\房地产PB\\")
files
paths <- paste(".\\房地产PB\\", files, sep="")
paths

df <- list()
for (i in 1:lengh(paths)){
    datai <- read_excel(paths[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值