- 博客(390)
- 收藏
- 关注
原创 《从裸机到 GPU 共享:一步一步在 Kubernetes 上部署 NVIDIA GPU Operator + KAI Scheduler》
NVIDIA GPU Operator = GPU 驱动 + Device Plugin + Runtime + 高级特性 + 监控 + 故障自愈全部打包成 Kubernetes 原生对象,让你像管理普通容器一样管理 GPU 资源。
2025-08-26 17:34:52
187
原创 生产级 Kubernetes 1.24+ 多 Master 集群搭建文档
本文基于 3 台 Master 节点 + N 台 Worker 节点 架构,采用 工具搭建高可用(HA)集群,兼容 Kubernetes 1.24~1.28 版本(生产环境推荐 1.26+,稳定性更优)。整体架构包含 负载均衡器(HAProxy)、高可用 ETCD 集群(内置)、容器运行时(Containerd),完全贴合生产环境对稳定性、高可用的要求。说明:所有节点(Master、Worker、LB)均需执行以下步骤,确保环境一致性。2.1.2 配置 hosts 文件(解析所有节点 IP)2.1.
2025-08-26 17:05:19
186
原创 一步一步在Kubernetes集群部署NVIDIA KAI Scheduler
通过以上步骤,你可以在Kubernetes集群上完整部署、配置、测试和卸载NVIDIA KAI Scheduler。如果遇到任何问题,可以查看KAI Scheduler的日志或参考官方文档获取更多帮助。确保输出的Server Version中Major.Minor >= 1.24,例如v1.24.0或更高版本。根据你的Kubernetes部署方式,重启kube-scheduler。两个Pod应该运行在同一个节点上,共享该节点上的一个GPU。确认集群中有至少一个节点配备NVIDIA GPU。
2025-08-26 16:40:29
167
原创 在Kubernetes集群上部署NVIDIA KAI Scheduler的详细文档
NVIDIA KAI Scheduler是一个Kubernetes原生的GPU调度解决方案,专为优化AI工作负载的GPU资源利用而设计。它支持GPU共享、公平调度和gang调度等高级特性,能够显著提高GPU集群的资源利用率和工作负载效率。
2025-08-26 16:30:37
344
原创 文吃透 Mermaid:从文本语法到高清架构图的全链路解析
下面用通俗+技术并行的方式,把「Mermaid 语法怎样变成浏览器里可见的架构图」这件事拆成 4 个阶段讲清楚。
2025-08-26 09:49:29
190
原创 从零开始画一张「汽车销售系统」微服务架构图:技术选型、Mermaid 语法与一键导出实战
本文将带你拆解一张真实落地的「汽车销售软件微服务架构图」,覆盖技术选型、Mermaid 绘图原理、前端一键导出 PNG 的完整链路,并给出可直接复制的源码。读完即可把任何系统架构搬到浏览器里“所见即所得”地生成高清图片。
2025-08-26 09:42:42
388
原创 ComfyUI 原生 REST API 技术文档
仓库:https://github.com/comfyanonymous/ComfyUI协议:GPL-3.0。
2025-08-22 17:27:40
974
原创 大模型自我进化框架SE-Agent:开启软件工程自动化新时代
SE-Agent的出现并非替代人类工程师,而是将重复性的“修Bug”“调参数”等工作自动化,让开发者得以聚焦架构设计、需求分析等高价值任务。正如早期用户反馈:“过去每天手动修复3个Bug,现在每天Review 30个AI生成的高质量PR。”当大模型学会“自我进化”,程序员的新身份——“进化教练”——正在崛起。点击“Merge”的瞬间,我们见证的不仅是代码的提交,更是软件工程从“人力密集型”向“智能驱动型”的历史性跨越。立即体验一杯咖啡的时间,见证大模型如何通过“自我进化”产出可部署的高质量代码。
2025-08-21 17:16:58
882
原创 银河麒麟V10防火墙下访问NFS共享:端口开放全攻略
在安全中心界面中,选择左侧网络保护,点击右侧“防火墙”模块的自定义按钮。通过本文步骤,可在银河麒麟V10系统中实现防火墙开启状态下的NFS共享访问,既保障了系统安全,又满足了网络文件服务需求。明确NFS服务的三大核心端口:111(rpcbind)、2049(nfs)、20048(mountd)。优先使用命令行批量配置端口规则,提升管理效率。结合telnet和ss命令验证端口连通性与监听状态。合理配置防火墙规则,既能抵御外部攻击,又能为NFS等服务提供安全的运行环境,是服务器管理的重要实践。
2025-08-21 15:52:09
376
原创 银河麒麟V10安装NFS服务端详细步骤
完成以上步骤后,NFS服务端即可正常提供共享服务,客户端可通过。将下载的RPM包拷贝至麒麟服务器的。(rpcbind)和。
2025-08-21 13:40:25
626
原创 用“水果”“午餐”“糖果”讲清楚 5 种量化交易策略
你有100元,要买饭、菜、水果、饮料,但不知道怎么分最健康。于是你让机器人算:30元买饭、25元买菜、20元买水果、25元买饮料。另类量化就是找那些奇奇怪怪、很少人注意的东西,比如天气、新闻情绪、卫星图片,让机器人从中发现赚钱的小秘密。你用这张地图让机器人去挖糖果,挖到就是你的“额外奖励”,这个额外奖励就叫阿尔法。贝塔就是“跟紧队长”,队长代表整个市场,你赚的是“大家一起跑”的钱。想像你在“挑水果”。你看苹果大不大、红不红、甜不甜,把这些“好水果”标准写成一条条小规则,让机器人帮你自动挑出好苹果。
2025-08-21 11:23:44
379
原创 一文读懂股票交易中的对冲平仓与交割平仓
一段时间后,A 公司股价涨至每股 25 元,小张判断股价可能即将回调,为了锁定 5000 元的盈利((25 - 20) × 1000),他选择在此时将 1000 股 A 公司股票全部卖出。小张卖出股票的这一操作,就是对冲平仓,成功将账面盈利转化为实际收益。通常是上市公司出现重大问题,如触发退市条件后进入退市整理期,或者公司进行并购重组等特殊资本运作时,会要求投资者对持有的股票进行处理,这就类似于交割平仓。在股票交易的世界里,“平仓” 是投资者结束交易的关键动作,其中对冲平仓和交割平仓是两种重要的平仓方式。
2025-08-21 10:55:16
330
原创 ComfyUI XY 图表脚本完全指南—— 用一张图看懂所有参数与模型的差异
XY Plot 是 ComfyUI 中最被低估的“效率神器”。把调参时间从数小时压缩到几分钟;用可视化结果说服甲方“为什么 CFG 7 比 11 更好”;在LoRA 训练阶段快速确定最佳权重。现在就打开 ComfyUI,把本文的 JSON 拖进去跑一遍吧!如果你做出了有趣的对比图,欢迎在评论区晒出网格~
2025-08-17 18:34:18
540
原创 【技术博客】480p 老番 → 8K 壁纸:APISR × SUPIR × CCSR「多重高清放大」完全指南
打底用 CCSR,精修用 SUPIR,保线稿用 APISR——按“轻→重→专”的顺序打组合拳,就是目前二次元超分最稳、最通用、也最容易复现的 4K/8K 终极方案。如果文章对你有用,记得点个 Star ⭐ 再走!
2025-08-17 18:23:03
571
原创 Euler 采样器在扩散模型中的原理解析:从数学公式到实践应用
在人工智能图像生成领域,扩散模型凭借独特的 “去噪” 机制成为技术焦点。其中,Euler 采样器作为基础且高效的工具,通过简洁计算逻辑实现快速图像生成。本文将结合 UNet 的协作原理,深入解析 Euler 采样器在扩散模型中的核心机制、性能表现与应用场景,助力大家深入理解这项技术。
2025-08-16 18:31:37
899
原创 从 NPC 到地形——米哈游如何用 AI 把 200 km² 开放世界压缩到 3 天做完
过去两年,米哈游把“技术宅拯救世界”的口号升级成了“AI 拯救技术宅”。如果你还停留在“AI 只是生成两张立绘”的认知,那可能已经低估了这家公司的野心——他们把 AI 嵌进了整条研运管线,从剧情、美术、配音到测试,甚至把UGC 工具直接塞给玩家。这篇文章用 7 个真实在跑的 case,拆解米哈游如何把3A 级内容工业化。米哈游把 AI 做成了新的生产线降本:最贵的美术、配音、策划人力直接砍半。提速:从“年”到“月”,再到“周”。体验:让单机体验真正迈向“虚拟世界”。
2025-08-16 17:43:05
1149
原创 [特殊字符]深度解析 FastMCP:重构MCP应用开发的全维度革命
FastMCP并非简单的协议实现工具,而是一套完整的服务端组件生态系统。其核心FastMCP类如同一个智能容器,不仅承载工具(Tools)、资源(Resources)、提示(Prompts)等功能模块,更内置动态路由、安全认证、错误处理等企业级能力。开发者无需关心底层通信细节,只需聚焦业务逻辑,就像搭积木般快速拼装出健壮的服务端应用。在这个「效率为王」的时代,FastMCP用代码诠释了「简单即强大」的哲学——没有复杂的配置文件,没有冗长的样板代码,有的只是「定义即服务」的畅快体验。
2025-08-12 14:38:05
929
原创 # [特殊字符]【Python 开发神器降世】uv:用 Rust 速度重构你的开发宇宙!
项目管理:从 0 到 1 的丝滑基建# 初始化项目:3 秒创建带虚拟环境的工程 uv init my-awesome-project cd my-awesome-project # 极速添加依赖:Ruff 静态检查瞬间到位 uv add ruff✨ 自动生成 .venv 环境,锁文件同步完成 # 一键运行检查:代码质量秒级反馈 uv run ruff check亮点:工作区模式支持 monorepo 架构,跨模块依赖解析如丝般顺滑,大型项目协作从此告别「环境地狱」。
2025-08-12 10:17:21
827
原创 [特殊字符] OpenCV图像预处理与ResNet-50深度学习分类实战
通过这个项目,我们不仅掌握了OpenCV的强大图像处理能力,还学会了如何与深度学习模型无缝集成。这种传统计算机视觉与现代AI技术的完美结合,为图像处理领域开辟了新的可能性。无论是创建艺术效果,还是进行智能分类,这套方案都能为你提供强大的技术支持。现在,就让我们一起开启计算机视觉的奇妙之旅吧!💡 小贴士:记得在实际使用时,根据你的具体需求调整参数,创造出属于你的独特视觉效果!关注我,获取更多计算机视觉和深度学习的实战技巧!🚀。
2025-08-11 13:42:33
443
原创 深入探索 PDF 数据提取:PyMuPDF 与 pdfplumber 的对比与实战
PyMuPDF 是一个基于 MuPDF 的高性能 Python 库,用于处理 PDF 文件。它支持多种功能,包括文本提取、图像提取、表格提取、页面渲染等。PyMuPDF 的底层是用 C++ 编写的,因此在处理大型文件时表现出色。优点:高性能、功能全面,支持多种格式提取。缺点:API 较复杂,文档相对较少。适用场景:适合处理大型 PDF 文件,需要提取多种格式数据。
2025-08-08 21:17:51
1005
原创 从Token到序列:阿里GSPO算法如何让大模型训练更稳、更强?
GSPO的提出,本质上是从“局部优化”转向“全局+局部协同优化”。它用序列级设计解决了GRPO的稳定性痛点,又用GSPO-token保留了Token级调整的灵活性,这让它在大规模LLM(尤其是MoE模型)的训练中表现卓越。目前,GSPO已经成功应用于Qwen3系列模型的训练,为其性能突破打下了基础。未来,随着模型规模继续扩大,这种兼顾稳定与灵活的强化学习算法,可能会成为大模型训练的“标配”。
2025-08-06 17:51:12
681
原创 Coze Studio 中 Python 模块 pip 依赖管理指南
在软件开发过程中,依赖管理是确保项目稳定运行的重要环节。在 Coze Studio 中,Python 模块的pip install依赖主要通过scripts/setup/python.sh脚本进行管理。本文将详细介绍如何在 Coze Studio 中添加和管理 Python 依赖,帮助开发者高效处理项目中的依赖问题。一、确认依赖管理脚本Coze Studio 的 Python 虚拟环境配置和依赖安装逻辑集中在coze-studio/scripts/setup/python.sh脚本中。
2025-08-06 13:51:21
1539
原创 技术博客:从HTML提取到PDF生成的完整解决方案
在软件开发和文档处理中,将HTML内容转换为PDF是一项常见需求。本文结合实际开发经验,详细介绍如何从包含标记的文本中提取HTML代码,并通过Python库生成PDF文件,同时解决依赖问题和优化渲染效果。技术选型建议复杂布局或需高级CSS支持时,优先选择WeasyPrint。追求简单快速时,使用pdfkit + wkhtmltopdf。开发注意事项始终验证输入的HTML内容是否为空。在不同操作系统上测试生成的PDF,确保兼容性。定期更新库版本以获取最新功能和修复。
2025-08-06 11:23:39
734
原创 大模型强化学习崩溃之谜:GSPO如何用序列级优化破局?——从GRPO缺陷到Qwen3实战解析
PPO对齐“状态-动作对”,适合游戏等交互场景;GRPO对齐“组内样本”,适合轻量化RLHF;GSPO对齐“完整序列”,适合大模型长文本生成、复杂推理——这正是Qwen3等模型突破性能天花板的核心。只有与“生成完整优质序列”的目标深度绑定,强化学习才能真正驯服大模型的“野性”。(本文基于阿里通义实验室论文《Group Sequence Policy Optimization》及Qwen3技术细节,论文链接:https://arxiv.org/pdf/2507.18071v1)
2025-08-05 15:35:37
949
原创 从 PPO 到 GRPO:为什么大模型后训练不再需要 Critic?
在传统的深度强化学习(如 OpenAI Five、AlphaStar)里,PPO(Proximal Policy Optimization)几乎成了“默认答案”。它用 Critic 网络估计状态价值 (V(s)),再用 GAE-λ 计算绝对优势 (A_t),最后用 clipped surrogate loss 做策略更新。但当模型参数涨到百亿级、显存以 T 计后,Critic 网络两份同规模模型(Policy + Critic)显存翻倍;Critic 需要额外前向/反向传播,吞吐下降;
2025-08-05 14:17:13
938
原创 n8n实战指南:5个场景带你解锁工作流自动化的终极潜力
n8n的真正价值,在于它不试图替代技术人员的判断,而是通过自动化处理重复性工作,释放团队的创造性精力。从5分钟搭建的简单通知流,到需要代码介入的复杂业务系统,n8n用开源的灵活性和技术友好的设计,重新定义了工作流自动化的边界。正如一位用户在社区分享的:"n8n让我们团队每周节省了15小时机械劳动,这些时间现在都用在了真正需要思考的问题上。"这或许就是自动化工具的终极目标——让技术团队更专注于创造,而非重复。立即访问n8n开源仓库,开始构建你的第一个自动化工作流吧。
2025-08-05 10:52:02
1226
原创 6小时复刻IMO金牌成果!蚂蚁多智能体框架AWorld掀起AI协作革命
2025年的国际数学奥林匹克竞赛(IMO)赛场,上演了一场AI界的“诸神之战”。当顶尖大模型在赛场上几乎全军覆没时,OpenAI、DeepMind等实验室突然斩获5/6题,震惊数学圈。而更令人惊叹的是,蚂蚁集团的AWorld多智能体框架团队仅用6小时,就复现了DeepMind的解题成果,并开源了可一键运行的多智能体IMO系统,让AI协作的力量震撼了整个技术圈。
2025-08-05 10:34:26
983
原创 [特殊字符] 开源版「扣子」前端调用实战:从零打造你的智能工作流引擎
扣子」是字节跳动推出的一款低代码 + AI 的智能体开发平台。它允许开发者通过拖拽和配置的方式,快速构建 AI 智能体和自动化工作流。随着「扣子」逐步开源,开发者现在可以在本地搭建属于自己的 AI 工作流引擎,实现更灵活、可控的 AI 应用。
2025-08-04 14:49:17
894
原创 详解如何使用 Coze Workflow API 快速实现流程自动化
Coze Workflow API 是 Coze 平台提供的一套接口,用于管理和执行工作流。执行已发布的工作流(同步/异步模式)传递自定义参数给工作流关联智能体(Bot)或应用(App)获取执行结果及调试信息查询工作流执行历史其核心优势在于:无需关心工作流内部的节点编排细节,只需通过简单的 API 调用即可触发复杂流程,大幅降低跨系统集成的开发成本。通过 Coze Workflow API,开发者可以轻松集成工作流能力到自己的应用中,无需关注复杂的流程编排细节。
2025-08-04 10:03:08
729
原创 字节开源Coze Studio:96小时狂揽9.2K星,重新定义AI Agent开发门槛
Coze Studio是一个全能型AI Agent开发平台,提供从开发到部署的全流程可视化工具链。降低AI应用开发的技术门槛。无论是需要定制智能客服、构建多模态处理工具,还是开发复杂的自动化工作流,开发者都能通过其可视化界面完成——无需深陷代码细节,就像用积木搭建城堡一样简单。从技术底层来看,Coze Studio采用TypeScript和Go主导开发,结合JavaScript等语言构建高性能微服务架构,且硬件要求极低(最低2核4G服务器即可部署),这让中小企业和个人开发者也能轻松上手。
2025-08-03 09:33:02
1239
原创 一次 Docker 镜像拉取的血泪踩坑实录:从 DNS 污染到并发崩溃的完整修复之路
坑点原因解决方案国内镜像源失效DNS 污染或官方下线使用国外加速源(如unsee.techDocker Compose 崩溃并发 bug重试或限制并发(权限问题非 root 用户使用root或docker组用户在国内使用 Docker,镜像加速源的选择比代码更重要。希望这份指南能帮你少掉几根头发。如果你发现了更稳定的加速源,欢迎在评论区分享!
2025-07-31 16:11:31
662
原创 Coze Studio 部署与使用常见问题全解析
Coze Studio 的问题多与环境配置、网络连通性或模型参数相关。遇到问题时,建议优先查看容器日志(如)定位具体错误,再根据本文提供的方法逐步排查。若问题仍未解决,可参考Coze Studio 官方文档或在 GitHub Issues 中反馈,社区将为你提供进一步支持。希望本文能帮助你顺利部署和使用 Coze Studio,专注于智能体开发而非环境调试!
2025-07-31 16:04:12
1291
1
原创 Coze Studio:开源AI Agent开发工具的全方位实践指南
Coze Studio通过开源模式降低了AI Agent开发的技术门槛,其整合的模型服务、工作流引擎、知识库等核心能力,让开发者能专注于业务逻辑而非底层架构。无论是构建企业级AI应用还是研究AI代理技术,Coze Studio都提供了坚实的基础。随着社区的不断发展,这款工具无疑将成为AI代理开发领域的重要基础设施。如果你也对AI Agent开发感兴趣,不妨从部署Coze Studio开始,探索构建智能代理的无限可能。
2025-07-31 13:13:21
1343
原创 Claude Code Agent 系统完整技术解析:解码下一代 AI 编程助手的内核
本次对 Claude Code Agent 系统的完整技术解析,成功还原了其创新架构设计、高效内存管理、完整工具生态和企业级安全防护等核心技术实现。其分层多 Agent 架构、实时 Steering 机制和智能上下文管理等创新技术,为构建下一代 AI Agent 系统提供了宝贵的技术参考和实现路径。Claude Code 不仅是一个优秀的 AI 编程助手,更是 AI Agent 技术发展的一个重要里程碑。(注:本文档基于逆向工程分析生成,仅用于技术研究和学习目的。
2025-07-29 13:23:40
1364
原创 基于多智能体的任务管理系统架构设计与实现
在当今人工智能和自动化领域,任务管理系统的高效性和智能化是核心竞争力之一。为了解决这些问题,我们提出了一种基于多智能体(Multi-Agent)的任务管理系统架构,结合记忆池存储和动态任务调度机制,实现了高效的任务管理和执行。系统的核心思想是通过多个智能体协作完成任务,同时利用记忆池存储上下文信息,提升系统的智能化水平。本文将详细介绍该系统的架构设计、工作流程以及关键模块的功能,并通过清晰的逻辑和实例说明其优势。未来,我们将进一步优化系统,引入更多智能化技术,提升系统的适应性和扩展性。
2025-07-27 18:52:48
1121
原创 LangGraph + MCP 双剑合璧:打造工业级智能问答平台
这个完整的实现提供了准确的服务端和客户端代码,支持两种不同的通信模式,可以直接运行和测试。
2025-07-27 14:30:51
565
原创 Xinference vs SGLang:详细对比分析
特性XinferenceSGLang定位通用AI模型推理平台高性能LLM服务框架专注领域多模态模型统一接口LLM推理性能优化设计理念易用性和兼容性性能和效率需求场景推荐选择理由多模态模型统一服务Xinference模型支持广泛,统一接口高性能LLM推理SGLang专门优化,性能卓越快速原型验证Xinference易用性好,上手快生产环境部署Xinference企业级功能完善长序列处理SGLang专门优化长序列复杂推理控制SGLangDSL支持精细控制。
2025-07-26 21:52:15
1004
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人