- 博客(4)
- 收藏
- 关注
原创 Simple Siamese
Exploring Simple Siamese Representation Learning浅谈一下对该论文的理解:作者认为,孪生体系结构可能是相关方法(BYOL MOCO SIMclr)共同成功的重要原因。 孪生网络可以自然地引入归纳偏差来建模不变性,因为按定义“不变性”意味着对同一概念的两次观察应产生相同的输出。权重共享Siamese网络可以对不变性进行建模。 更复杂的转换(例如增强)。 我们希望我们的探索将激励人们重新思考孪生体系结构在无监督表示学习中的基本作用。简要介..
2021-04-21 15:27:14
308
原创 互信息
互信息0 前言为了介绍互信息(mutual information),先给出熵和条件熵的定义。在信息论与概率统计中,熵(entropy)是表示随机变量的不确定性的度量,也就是说熵的值越大,不确定性越高。1 熵与条件熵(1)第一类互信息的定义(研究同一系统的不同状态,比如决策树中的分支选择)随机变量X的熵定义为: 从公式中我们能看出,熵只依...
2021-03-30 20:51:19
467
原创 CV中的损失函数设定
3.5损失函数Matching strategy(匹配策略)目的:我们在做CV的实验过程中,我们会在输入的图片样本后,先为其分配许多的先验框,我们设置先验框的目的就是让其去预测类别(正样本或者负样本,再或者是背景)和目标框信息(动物或者其它物体)。之后,我们需要知道每个先验框和哪个目标对应(或者是匹配),从而才能判断预测的是否正确。不同方法ground truth box (真实框)与先验框的匹配策略大致都是类似的,以下我们采用SSD中的匹配策略:第一种匹配原则:现...
2020-12-22 20:18:41
499
原创 3.1 锚框and先验框
交并比(Intersection over Union, IoU)在目标检测当中我们常常需要引入目标框,用于存储目标的位置信息。交并比(IoU)是指两个矩阵交集与并集之间的比值。我们通过交并比的值来判断我们预测的目标区域与实际的目标区域之间差异度,去判断我们的算法是否足够令人满意。先验框我们将图片输入到模型,模型给出检测结果,此时我们需要考虑在图片检测的过程中我们可能需要遍历每一个可能的目标框,这会增加算力系统的开销。我们是否能采取一些方法去改进这种情况呢?先验框的出现就是为了解决如何定义哪
2020-12-19 10:42:13
969
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人