信贷模型域——客户管理阶段模型(贷中模型)

摘要

本文主要探讨了信贷模型域中的客户管理阶段模型,重点聚焦于交叉销售模型。交叉销售模型不仅应用于贷中阶段,还贯穿于贷前、贷中、贷后全过程,其核心作用在于提升客户价值、增强客户粘性、降低流失率以及实现风险与收益的平衡。文中通过具体案例展示了交叉销售模型在现实业务中的应用,并指出其在贷中阶段的主要任务是提升存量客户价值、增加产品使用率,同时有效控制风险。

1. 行为评分模型(B卡)

1.1. 行为评分模型(B卡)定义

行为评分模型(Behavior Scorecard,简称 B卡) 是金融机构在存量客户管理 中常用的信用风险管理工具。它主要基于客户已经发生的 账户行为、交易记录、还款表现、额度使用情况 等动态数据,预测客户未来一段时间(如未来 6~12 个月)的违约风险。通俗地说:

  • A卡(申请评分)解决的是“能不能批”;
  • B卡(行为评分)解决的是“批了之后,还能不能继续用、要不要提额/降额”。

对比维度

A卡(Application Scorecard)

B卡(Behavior Scorecard)

适用对象

新客户(首次申请贷款/信用卡)

存量客户(已获批、在贷客户)

数据来源

外部征信(央行征信、第三方数据)、申请表信息、初始授信资料

内部账户行为数据:还款表现、消费记录、额度使用率、交易习惯

主要目的

判断“批还是不批” → 初始授信决策

判断“继续用还是不用,提额还是降额” → 存量管理

建模窗口

观察窗口:申请时刻

观察窗口:过去 6~12 个月的账户行为

预测目标

未来是否会违约(在申请后的 6~12 个月内)

未来是否会违约(在未来 6~12 个月内)

典型变量

年龄、收入、婚姻、职业、信用历史、负债情况

还款习惯、逾期次数、MOB(月龄)、额度使用率、交易频率

决策动作

是否授信、授信额度、利率

提额/降额、是否冻结、是否进入催收名单、营销触达

使用频率

一次性(申请时刻)

持续性(每月/每季度评分,动态调整)

风险管理阶段

贷前风控

贷中+贷后风控

1.2. B卡核心作用

  1. 风险管理
    • 识别高风险客户,提前预警
    • 辅助催收策略(提前介入 vs 延迟催收)
  1. 额度管理
    • 优质客户提额(增加黏性和收益)
    • 高风险客户降额或冻结
  1. 运营营销
    • 识别优质客户,精准营销新产品
    • 对中低风险客户,进行分层运营

1.3. 模型输入(典型变量)

输入特征主要来源于 内部账户行为数据,常见维度包括:

  1. 账户还款行为
    • 最近 6 个月逾期次数
    • 最长连续逾期天数
    • M1/M2/M3+ 发生率
    • 最近 6 个月最低还款额支付比例
  1. 额度使用情况
    • 信用额度使用率(余额/总额度)
    • 最近 3 个月的额度波动率
    • 现金提取比例(取现/总交易额)
  1. 交易行为特征
    • 月均消费笔数、金额
    • 高频小额 vs 大额交易比例
    • 消费类型(线上/线下、大额分期)
  1. 客户生命周期特征
    • MOB(月龄,Months on Book)
    • 账户年龄与还款表现关系
  1. 外部数据(可选)
    • 外部征信的动态更新信息
    • 负债水平变化情况

1.4. 模型输出

  • 一个 行为评分(Behavior Score),通常为 300–900 分区间
  • 评分越高,表示客户未来违约概率越低
  • 可转化为 PD(Probability of Default,违约概率)

1.5. B卡的建模思路

  1. 样本选择
    • 人群:存量授信客户(信用卡用户、贷款用户)
    • 观察窗口:过去 6 个月的行为数据
    • 预测窗口:未来 6 个月是否会违约
  1. 特征变量
    • 还款行为:是否按时还款、逾期天数、逾期频率
    • 额度使用:额度使用率、现金透支率
    • 交易行为:月均消费金额、交易频率、波动率
    • 账户管理:联系方式是否频繁变更、是否提前还款
    • 衍生变量:还款金额/账单金额比值、消费集中度
  1. 建模方法
    • 传统方法:Logistic 回归(可解释性强,监管认可)
    • 机器学习:GBDT、XGBoost、随机森林(提升预测精度)
  1. 模型评估
    • KS 值、AUC(区分能力)
    • PSI(稳定性)
    • Lift(提升度)

1.6. 决策方式

基于评分结果,银行/消金公司会设置不同的 策略分层

  • 高分群体(低风险)
    • 提额、优惠利率、交叉销售、重点营销
  • 中分群体(中等风险)
    • 保持额度不变,正常使用
  • 低分群体(高风险)
    • 降额、冻结部分额度、重点监控
    • 提前预警,进入催收名单

1.7. B卡的应用案例

贷中管理

  • 定期(如每月/每季度)对存量客户重新评分
  • 动态调整客户额度与利率

贷后管理

  • 早期风险预警(提前识别潜在违约人群)
  • 催收优先级排序(资源集中在高回收率人群)

客户价值运营

  • 识别优质客户 → 提额、交叉销售(如保险、理财)
  • 风险客户 → 控制敞口,减少损失

银行信用卡:

  • 高分客户 → 提额、推荐新产品
  • 中分客户 → 维持额度、定期监测
  • 低分客户 → 降额、冻结、纳入催收名单

消费金融:

    • 根据 B卡分数决定是否允许客户再次借款、借款额度多少

2. 交易欺诈模型

2.1. 交易欺诈模型定义

交易欺诈模型是指通过对交易行为进行实时或准实时的建模和评分,识别可疑、异常或潜在欺诈的交易,进而辅助风控系统在交易发生时做出 拦截、放行、人工复核或风险加权 的决策。交易欺诈模型是 贷中/支付环节的实时风控工具,通过多维度数据建模,输出欺诈风险评分与拦截策略,目标是 最大限度拦截风险、最小化对正常交易的干扰。常见场景:信用卡刷卡、网贷提现、支付转账、电商支付等。

2.2. 模型作用

  • 实时识别风险交易:判断交易是否存在盗刷、冒用、套现、洗钱等欺诈行为。
  • 降低损失:在交易发生前/发生中进行拦截,避免资金损失。
  • 提高用户体验:在保障安全的同时尽量减少误杀率,保证正常交易通过。
  • 辅助合规:满足反洗钱(AML)、反欺诈相关监管要求。

2.3. 模型输入

交易欺诈模型的输入维度非常广,主要分为以下几类:

  • 交易基本信息:交易时间、金额、商户、交易渠道、交易类型(POS、APP、网页)、设备信息。
  • 用户账户特征:账户注册时间、绑定信息、账户等级、是否高危客户。
  • 行为特征:交易频率、交易金额分布、交易时间规律、商户类别分布。
  • 设备与环境:IP地址、MAC、IMEI、GPS定位、设备指纹、代理/VPN信息。
  • 历史数据:客户过往欺诈记录、账户被盗历史、黑名单命中情况。
  • 外部数据:反欺诈联盟数据、行业共享黑名单、地理风险数据。

2.4. 模型输出

  • 欺诈风险评分(0-1000,或0-1 概率)。
  • 风险等级标签(低风险、中风险、高风险)。
  • 决策建议:放行、拦截、人工复核、限额。

2.5. 建模方案

  • 传统建模方法
    • 逻辑回归(LR):可解释性强,适合线性特征关系。
    • 评分卡模型:常用于早期反欺诈,与风控规则结合使用。
  • 机器学习方法
    • 随机森林、GBDT(XGBoost、LightGBM):适合处理非线性特征与高维数据。
    • 深度学习模型:LSTM(捕捉交易序列行为)、图神经网络(关系网络,发现团伙欺诈)。
  • 实时风控体系
    • 建立 规则引擎 + 机器学习模型 的双层防控体系:
      • 规则引擎:硬性黑名单、国家限制、商户白名单。
      • 模型:识别复杂模式,输出风险概率。

2.6. 决策方式

  • 硬拦截:高风险交易直接拒绝。
  • 限额处理:限制交易金额或次数。
  • 人工复核:进入人工审核队列。
  • 动态加权:风险评分与额度、利率、费用挂钩。
  • 多层次响应:结合用户历史信誉,灵活处置。

2.7. 应用场景

  • 银行信用卡交易:盗刷识别、套现识别。
  • 互联网支付:第三方支付平台识别异常转账、羊毛党。
  • 电商场景:识别虚假订单、刷单、盗号。
  • 消费金融:贷款提现、分期付款的欺诈检测。
  • 跨境支付:识别跨国黑产、洗钱活动。

3. 额度/价格调整策略

在信贷和消费金融场景里,通常是指对 客户的授信额度(Credit Limit)贷款利率/价格(Pricing) 的动态管理与优化策略。这个属于 贷中/贷后管理 的核心环节,兼顾风险控制和收益最大化。

3.1. 额度调整策略定义

额度调整策略是指在客户生命周期中,根据其风险水平、还款表现、交易行为等因素,动态地对客户授信额度进行上调或下调的策略。

3.2. 额度调整策略作用

  • 风险管理:降低违约风险,防止过度授信。
  • 客户经营:对优质客户增加额度,提高使用率与粘性。
  • 资源配置:优化资金占用,提升资金使用效率。

3.3. 额度调整策略输入

  • 客户基本信息(年龄、职业、地区)
  • 信用评分模型(A卡、B卡、C卡结果)
  • 交易行为(消费频率、活跃度、异常交易)
  • 还款表现(是否逾期、逾期次数、逾期金额)
  • 外部征信(人行征信、三方数据)

3.4. 额度调整策略输出

  • 调整后的额度值(上调/下调/维持不变)
  • 调整建议(提升 20%、降低 50%、冻结额度等)

3.5. 额度调整策略建模/决策方式

  • 规则引擎:基于阈值和条件,如 “近 6 个月无逾期 + 高活跃 → 上调额度”。
  • 评分卡模型:额度提升申请通过风险评分卡评估。
  • 机器学习模型:预测客户未来违约概率和资金需求,辅助额度决策。

3.6. 额度调整策略应用场景

  • 提升额度(额度分期、临时额度、提额活动)
  • 下调额度(发现高风险信号、黑名单预警)
  • 定期额度评估(半年或一年进行批量调整)

3.7. 价格调整策略定义

价格调整策略是指在贷款存续期内,根据客户风险变化、市场利率、资金成本等因素,对客户贷款利率或手续费进行动态调整的策略。

3.8. 价格调整策略作用

  • 风险补偿:对高风险客户提高价格,覆盖潜在损失。
  • 竞争力提升:对低风险客户降低价格,增加市场吸引力。
  • 收益优化:在风险可控的前提下最大化利差。

3.9. 价格调整策略输入

  • 客户风险等级(违约概率 PD、损失率 LGD)
  • 市场利率(LPR、Shibor 等)
  • 资金成本(融资成本、资金池成本)
  • 客户交易行为(使用频率、提前还款情况)
  • 市场竞争情况(同类机构价格区间)

3.10. 价格调整策略输出

  • 动态利率(如年化利率 12% → 调整为 10% 或 15%)
  • 手续费率调整
  • 差异化定价方案(新客优惠、老客加价)

3.11. 价格调整策略建模/决策方式

  • 初始定价模型(基于 A 卡、资金成本、目标收益率)
  • 风险定价模型(基于 PD、LGD、EAD → RAROC 定价)
  • 动态调价策略(客户行为/风险变动触发价格调整)

3.12. 价格调整策略应用场景

  • 首贷定价(根据信用评分和资金成本)
  • 复贷定价(客户行为表现良好 → 降价留存)
  • 风险加价(客户风险升高 → 提高利率)
  • 竞争对标(市场利率下行 → 跟随下调价格)

3.13. 额度与价格调整策略的关系

  • 额度价格 相辅相成:
    • 优质客户 → 提升额度 + 降低价格(留存&增加收益)
    • 高风险客户 → 降低额度 + 提高价格(控制风险&补偿损失)
  • 在实际风控系统里,经常会把两者结合为额度+定价联合策略,通过一个策略引擎/决策引擎统一管理。

3.14. 额度与价格调整策略示例

  • 客户A:近 12 个月无逾期,活跃度高,评分提升 → 授信额度从 2 万调至 3 万,利率从 12% 调整至 10%。
  • 客户B:出现连续 30 天逾期,评分下降 → 授信额度从 1 万调至 5 千,利率从 12% 提升至 15%。

4. 客户流失模型

在金融、信贷、电商、运营等场景里,是用来预测哪些客户有可能停止使用产品或服务的模型。它属于典型的 预测性建模,目标是通过数据分析预防客户流失、提升客户留存和盈利能力。

4.1. 客户流失模型定义

客户流失模型是指利用客户的行为数据、交易数据、互动记录等,通过统计或机器学习方法预测客户在未来一定时间内流失的概率。流失定义因业务不同而不同:

  • 信贷/消费金融:连续 N 个月未使用贷款或未还款
  • 电商/会员制:一定周期内未消费或未登录
  • 通信/订阅:主动退订或停止续费

4.2. 客户流失模型作用

  • 预防客户流失:提前识别高风险客户,进行挽留
  • 优化营销策略:针对高风险客户推送优惠、活动或增值服务
  • 资源优化:集中资源在最有价值的客户群
  • 提高收益:减少流失带来的收入损失

4.3. 客户流失模型输入(特征变量)

客户流失模型主要依赖以下几类数据:

  1. 客户特征:年龄、性别、地区、职业、注册时长等
  2. 行为特征:登录频次、交易频次、交易金额、消费类别、活跃天数
  3. 交易特征:贷款使用记录、还款情况、逾期记录
  4. 互动特征:客服沟通记录、投诉次数、活动参与度
  5. 外部数据:信用评分、社交行为、经济环境数据

4.4. 客户流失模型输出

  • 客户流失概率(Churn Probability)
    • 如客户 A 流失概率 0.8 → 高风险
    • 客户 B 流失概率 0.1 → 低风险
  • 流失风险等级(低/中/高)
  • 推荐策略(针对高风险客户的干预措施)

4.5. 客户流失模型建模方法

  1. 统计方法
    • 逻辑回归(Logistic Regression)
    • 判别分析(Discriminant Analysis)
    • 生存分析(Survival Analysis,预测流失时间)
  1. 机器学习方法
    • 决策树 / 随机森林
    • XGBoost / LightGBM / CatBoost
    • 神经网络(深度学习)
    • 集成模型(提升预测准确性)
  1. 评价指标
    • AUC/ROC:模型区分能力
    • 准确率/召回率/F1
    • KS 值:风控常用指标
    • Lift / Gain:营销效果衡量

4.6. 客户流失模型决策与应用

  • 高风险客户挽留策略
    • 个性化优惠券
    • 提前提醒、客服主动联系
    • 提供更灵活的额度或利率
  • 客户分群管理
    • 流失概率高 + 高价值客户 → 核心挽留对象
    • 流失概率高 + 低价值客户 → 资源有限,可选择性挽留
  • 产品优化
    • 流失原因分析 → 产品迭代优化

客户ID

活跃天数

月均交易额

最近一次交易

逾期次数

流失概率

风险等级

挽留策略

1001

2

0

90天前

0

0.85

个性化优惠、客服联系

1002

25

2000

3天前

0

0.05

正常运营

5. 交叉销售模型

交叉销售模型(Cross-Selling Model),在金融、信贷、电商、保险等场景非常常用,主要目标是 提高客户价值和销售效率

5.1. 交叉销售模型定义

交叉销售模型是指基于客户历史行为、偏好和风险特征,预测客户对其他产品或服务的潜在需求,从而进行针对性推荐和销售的模型。简单来说,就是“你已有产品,我预测你可能还会买什么”。

5.2. 交叉销售模型作用

  • 提升客户价值(Customer Lifetime Value, CLV):增加客户在企业的总消费。
  • 提高营销精准度:避免盲目推销,提高转化率。
  • 降低获客成本:通过现有客户进行销售,比新客户成本低。
  • 客户关系管理:通过个性化推荐增强客户黏性。

5.3. 交叉销售模型输入(特征变量)

  1. 客户基本信息:年龄、性别、职业、地区、注册时长等
  2. 交易行为特征:历史购买产品类型、金额、频次、消费渠道偏好(线上/线下、APP/柜面)
  3. 风险特征(金融/信贷场景):信用评分、逾期记录、还款行为
  4. 互动与偏好特征:客服沟通记录、点击行为、活动参与情况
  5. 产品特征:产品类别、价格、收益率、组合性

5.4. 交叉销售模型输出

  • 客户购买概率预测
    • 客户 A 对产品 X 的购买概率 0.7 → 高推荐
    • 客户 B 对产品 Y 的购买概率 0.2 → 低推荐
  • 推荐产品列表
    • 按潜在价值或购买概率排序
  • 客户分群
    • 高潜力客户(可重点营销)
    • 低潜力客户(可定期维护)

5.5. 交叉销售模型建模方法

  1. 传统统计方法
    • 逻辑回归(Logistic Regression)
    • 关联规则挖掘(Apriori、FP-Growth)
  1. 机器学习方法
    • 决策树 / 随机森林
    • 梯度提升树(XGBoost、LightGBM)
    • 神经网络(MLP、深度推荐系统)
  1. 推荐系统方法
    • 协同过滤(用户-产品矩阵预测)
    • 基于内容的推荐(Content-based)
    • 混合推荐(Hybrid Recommender)

5.6. 交叉销售模型应用场景

  • 银行/信贷
    • 已有信用卡 → 推荐贷款、理财、保险
    • 已有贷款 → 推荐附加保障产品
  • 电商
    • 已买商品 → 推荐搭配商品、升级套餐
  • 保险
    • 已有车险 → 推荐家庭保险、意外险
  • 通信/订阅服务
    • 已有流量包 → 推荐视频会员或增值服务

5.7. 交叉销售模型示例

客户ID

已购产品

预测潜在产品

购买概率

推荐策略

1001

信用卡A

个人贷款B

0.78

主动推荐、短信通知

1002

信用卡B

理财产品C

0.42

营销活动邮件

1003

贷款A

保险产品D

0.65

客服电话回访

6. 贷中模型思考

6.1. 交叉销售模型是不是“贷中”?

严格意义上,交叉销售模型不单纯属于“贷中”,它的应用范围更广,覆盖 贷前 + 贷中 + 贷后 各环节:

阶段

交叉销售模型的典型应用

贷前

在获客阶段,根据信用卡申请人画像,推荐相关的保险、增值服务等(典型如“申请信用卡时搭售盗刷险”)。

贷中

在客户贷款存续期间,利用客户的还款表现、资金需求,推荐新的贷款、分期产品、理财产品等。

贷后

在客户即将结清贷款或长期稳定使用后,推荐二次贷款、家庭金融产品(保险、理财)。

因此,贷中是应用交叉销售模型的重点场景之一,但它并不仅限于贷中。

6.1.1. 现实业务中的具体作用

在现实金融机构里,交叉销售模型主要有三大作用

  1. 提升客户价值(CLV,Customer Lifetime Value)
  • 已经获客的客户往往获客成本很高,通过交叉销售把 单一产品客户 → 多产品客户,提升整体盈利能力。
  • 例子:客户有一张信用卡 → 推荐分期付款 → 再推荐消费贷款 → 再推荐理财或保险。
  1. 增强客户粘性 & 降低流失
  • 多产品绑定的客户更不容易流失,因为迁移成本高。
  • 例子:客户同时持有信用卡 + 贷款 + 理财,就算信用卡积分优惠下降,也不容易流失到其他银行。
  1. 风险与收益平衡
  • 在贷中管理里,交叉销售模型可以:
    • 低风险客户 推荐更多产品,增加授信额度,推高收益。
    • 高风险客户 限制交叉销售,避免风险积累。
  • 例子:稳定还款客户 → 推荐追加贷款或大额分期;逾期风险客户 → 不推荐、甚至削减交叉产品。

6.1.2. 现实业务中典型落地场景

  • 信用卡 + 消费分期:客户用卡活跃度高 → 模型预测分期接受概率高 → 推荐账单分期。
  • 贷款 + 保险:客户申请消费贷款 → 推荐附加意外险/还款保障险。
  • 贷款 + 理财:客户资金周转充裕,风险等级低 → 推荐理财产品。
  • 对公业务:企业已有流动资金贷款 → 推荐结算账户、供应链融资、理财。

交叉销售模型在金融业务中不是单纯的“贷中管理工具”,而是覆盖客户全生命周期的营销模型。在贷中阶段,它的现实作用是提升存量客户价值、增加产品使用率,同时控制风险。

博文参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

庄小焱

我将坚持分享更多知识

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值