【机器学习】【深入浅出】混淆矩阵全解析:搞懂 TP、FP、TN、FN 与分类模型评估

1. 混淆矩阵是什么

混淆矩阵(Confusion Matrix)是用于二分类或多分类问题评估模型性能的常见工具。它通过一个矩阵来展示模型在预测时各类别之间的“混淆”情况——即真实标签和预测标签的对应关系。

二分类中的混淆矩阵示例

对于二分类问题(如“是否患病”、“好瓜/坏瓜”等),混淆矩阵通常是一个 的表格:

 

预测:负类 (Negative)

预测:正类 (Positive)

真实:负类 (Negative)

True Negative (TN)

False Positive (FP)

真实:正类 (Positive)

False Negative (FN)

True Positive (TP)

True Negative (TN):真实为负类,模型也预测为负类

False Positive (FP):真实为负类,但模型错误地预测为正类(“假正例”)

False Negative (FN):真实为正类,但模型错误地预测为负类(“假负例”)

True Positive (TP):真实为正类,模型预测也为正类

 

如果是多分类,混淆矩阵就会变成 的表格( 为类别数),行表示“真实类别”,列表示“预测类别”,对角线上的数字表示被正确预测的样本数,而非对角线上的数字表示不同类别间的混淆。


2. 怎么计算混淆矩阵

1. 预测结果与真实标签对比

• 在测试集或验证集上,模型会给出每个样本的预测标签;

• 同时,我们也知道该样本的真实标签。

2. 分类对比统计

• 对于每个样本,查看其“真实标签”和“预测标签”组合;

• 在二分类情况下,如果真实为正、预测也为正,则对“TP”计数加 1;真实为负、预测为负,则对“TN”计数加 1,依此类推;

• 对所有测试样本进行统计后,就能得到混淆矩阵四个格子的数值 (TN, FP, FN, TP)。


例子演示

假设我们有一个二分类模型,测试集中有 10 个样本。真实标签和预测标签如下表所示:

样本

真实标签 (Actual)

预测标签 (Predicted)

1

正 (1)

正 (1)

2

正 (1)

负 (0)

3

负 (0)

负 (0)

4

正 (1)

正 (1)

5

负 (0)

负 (0)

6

正 (1)

负 (0)

7

负 (0)

正 (1)

8

正 (1)

正 (1)

9

负 (0)

负 (0)

10

负 (0)

负 (0)

让我们统计一下:

TP(真正例):真实为正、预测也为正。表中样本 #1, #4, #8 共 3 个。

TN(真负例):真实为负、预测也为负。表中样本 #3, #5, #9, #10 共 4 个。

FP(假正例):真实为负、预测却为正。表中样本 #7 共 1 个。

FN(假负例):真实为正、预测却为负。表中样本 #2, #6 共 2 个。

所以混淆矩阵如下:

 

预测:负 (0)

预测:正 (1)

真实:负(0)

TN = 4

FP = 1

真实:正(1)

FN = 2

TP = 3

3. 混淆矩阵有什么作用

1. 精细化分析模型错误类型

• 混淆矩阵不仅能告诉我们模型总体上对多少样本预测正确,也能告诉我们“模型容易把正例预测成负例”还是“容易把负例预测成正例”。在很多实际任务中,这个区别非常重要(如医疗诊断中,FP 与 FN 的代价不一样)。

2. 衍生多种评价指标

• 通过混淆矩阵的 TP, TN, FP, FN,能计算准确率 (Accuracy)精确率 (Precision)召回率 (Recall)F1-score 等多种指标。

• 这些指标能更全面地评估模型在不同角度(如区分不同错误类型)上的表现。

• 在多分类情形下,通过对混淆矩阵对角线和非对角线元素进行统计,

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值