🏁 背景说明
在金融、会计、报表等对精度要求极高的系统开发中,数值误差是个常见却致命的问题。特别是在 Python 中,如果直接使用 float
类型进行计算,不仅容易出现意料之外的尾差,还可能在数据累计、对账、汇总时带来逻辑错误。
因此,作为一名实战派开发者,我们必须明确:float 不适用于金融计算,需要借助更安全的手段来规避精度偏差。
💥 为什么 Python 会产生精度误差?
✳️ 原因一:浮点数的二进制表示本身就“不精确”
Python 中的 float
本质上采用的是 IEEE 754 标准的双精度浮点表示,有些十进制小数(如 0.1
)在二进制中是无限循环的,必须进行“近似存储”。
示例:
print(0.1