CCF201809-2 买菜 (python语言)

本文介绍了一种算法,用于计算两个人在特定时间段内买菜并装车的时间重叠,以此来确定他们可以聊天的总时间。通过分析给定的时间段,采用两种不同的方法进行求解,一种是使用大数组存储所有时间点的状态,另一种则是直接对比每个时间段来找出重叠部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

试题编号:201809-2
试题名称:买菜
时间限制:1.0s
内存限制:256.0MB
问题描述:

问题描述

  小H和小W来到了一条街上,两人分开买菜,他们买菜的过程可以描述为,去店里买一些菜然后去旁边的一个广场把菜装上车,两人都要买n种菜,所以也都要装n次车。具体的,对于小H来说有n个不相交的时间段[a1,b1],[a2,b2]...[an,bn]在装车,对于小W来说有n个不相交的时间段[c1,d1],[c2,d2]...[cn,dn]在装车。其中,一个时间段[s, t]表示的是从时刻s到时刻t这段时间,时长为t-s。
  由于他们是好朋友,他们都在广场上装车的时候会聊天,他们想知道他们可以聊多长时间。

输入格式

  输入的第一行包含一个正整数n,表示时间段的数量。
  接下来n行每行两个数ai,bi,描述小H的各个装车的时间段。
  接下来n行每行两个数ci,di,描述小W的各个装车的时间段。

输出格式

  输出一行,一个正整数,表示两人可以聊多长时间。

样例输入

4
1 3
5 6
9 13
14 15
2 4
5 7
10 11
13 14

样例输出

3

数据规模和约定

  对于所有的评测用例,1 ≤ n ≤ 2000, ai < bi < ai+1,ci < di < ci+1,对于所有的i(1 ≤ i ≤ n)有,1 ≤ ai, bi, ci, di ≤ 1000000。

 

问题链接:CCF201809-2 买菜

问题分析

两人只有在装车时才能聊天,意为两人装车时间重叠时可以聊天。将两人重叠的区间相加起来即可。

下面用最简单的方法去做:因为题目上给出了最大的时间是一百万,最小是1.所以我们最大只需要去开辟一个大小为一百万+1的数组存储装货的时间。如果小h在某个时间段装货了,对应的数组+1。小w类似。在最后计算时间时只需要看那一百万+1大小的数组中有多少个2就可以得出结果。

虽然这样比较浪费内存,时间消耗也不小,但是容易想到。

具体思想请参考下面代码

满分程序

n=int(input())
H=[]
W=[]
count=[0]
#开辟一百万加一的存储空间,0位置不用
for i in range(1000000+1):
    count+=[0]
#读入第一组数据,存到一个数组里面
for i in range(n):
    s=input().split()
    s[0],s[1]=int(s[0]),int(s[1])
    #将小H装货的时间存到对应的count中。
    for i in range(s[0],s[1]):
        count[i]+=1
    H+=[s]
#读入第二组数据,存到一个数组里面
for i in range(n):
    s=input().split()
    s[0],s[1]=int(s[0]),int(s[1])
    for i in range(s[0],s[1]):
        count[i]+=1
    W+=[s]
time=0
#找出最小的和最大的元素
Min=min(H[0][0],W[0][0])
Max=max(H[n-1][1],W[n-1][1])
#count中值为2的元素即两人装菜时间相同的时间
for i in range(Min,Max):
    if count[i]==2:
        time+=1
print(time)

方法二

问题分析

对于两人每次装货时间只有六种可能(红的代表小H,蓝的代表小W。上下重叠部分代表两人同时装货的时间)

这样解决问题相比上面的方法节省了很多存储空间,时间也更快一点

满分程序

n=(int)(input())
H=[]
W=[]
for i in range(n):
    H=H+[input().split()]
    H[i][0]=(int)(H[i][0])
    H[i][1]=(int)(H[i][1])
for i in range(n):
    W=W+[input().split()]
    W[i][0],W[i][1]=(int)(W[i][0]),(int)(W[i][1])
time=0
for i in H:
    for j in W:
        #下面即有可能出现的六种情况
        if i[0]>=j[1]: 
            continue
        elif i[1]<=j[0]:
            break
        elif i[0]<=j[0] and j[1]>=i[1]:
            time+=abs(i[1]-j[0])
        elif i[0]<=j[0] and j[1]<=i[1]:
            time+=abs(j[1]-j[0])
        elif i[0]>=j[0] and j[1]>=i[1]:
            time+=abs(i[1]-i[0])
        elif j[0]<=i[0] and j[1]<=i[1]:
            time+=abs(j[1]-i[0])
print(time)

 

### CCF CSP 2018年9月 Python真题及答案解析 #### 题目概述 CCF CSP 2018年9月的第一题涉及卖菜问题,第二题则围绕买菜展开。这两道题目均考察了基本的数据处理能力和逻辑思维能力。对于初学者来说,理解输入输出的要求以及边界条件尤为重要[^2]。 #### 卖菜 (201809-1) ##### 描述 给定一个长度为 n 的整数数组 a 和两个参数 p 和 q,计算满足以下条件的子区间数量: - 子区间的最小值大于等于 p; - 子区间的最大值小于等于 q。 ##### 解析 该问题可以通过滑动窗口算法高效解决。具体而言,维护当前窗口内的最小值和最大值,并动态调整窗口大小以统计符合条件的子区间数目。以下是基于此思路的一个实现: ```python def count_subarrays(n, p, q, array): from collections import deque min_deque = deque() max_deque = deque() result = 0 left = 0 for right in range(n): while min_deque and array[right] < array[min_deque[-1]]: min_deque.pop() min_deque.append(right) while max_deque and array[right] > array[max_deque[-1]]: max_deque.pop() max_deque.append(right) while array[min_deque[0]] < p or array[max_deque[0]] > q: if min_deque[0] == left: min_deque.popleft() if max_deque[0] == left: max_deque.popleft() left += 1 result += right - left + 1 return result # 输入部分 n, p, q = map(int, input().split()) array = list(map(int, input().split())) print(count_subarrays(n, p, q, array)) ``` 上述代码实现了双端队列来追踪当前窗口的最大值与最小值,从而快速判断是否满足约束条件并更新计数值。 --- #### 买菜 (201809-2) ##### 描述 某人每天可以购买一定量的商品,每种商品的价格不同。已知未来几天各商品价格变化情况,请设计一种策略使得总花费最少。 ##### 解析 这是一个典型的贪心算法应用案例。核心思想在于优先选择单位成本最低的商品进行采购,直到达到每日需求上限为止。下面展示了一种可能的解决方案: ```python from heapq import heappop, heappush def minimal_cost(days, daily_needs, prices_per_day): total_cost = 0 available_items = [] for day_index in range(len(daily_needs)): current_price = prices_per_day[day_index] # 将当天所有可选物品加入候选列表 for item_id, price in enumerate(current_price): heappush(available_items, (price, item_id)) need_count = daily_needs[day_index] # 贪婪选取最便宜的选项直至满足当日需求 while need_count > 0 and available_items: cheapest_item = heappop(available_items)[0] total_cost += cheapest_item need_count -= 1 return total_cost # 示例数据读取方式 days = int(input()) daily_needs = list(map(int, input().strip().split())) prices_per_day = [] for _ in range(days): row_prices = tuple(map(float, input().strip().split())) prices_per_day.append(row_prices) result = minimal_cost(days, daily_needs, prices_per_day) print(result) ``` 这里利用堆结构保持全局最优的选择顺序,在每次循环中不断补充新的备选项至堆内以便后续操作。 --- ### 总结 以上两道题目分别代表了不同的编程技巧——前者侧重于窗口管理技术的应用;后者体现了如何通过适当的数据结构优化贪婪决策过程。两者共同强调了对细节的关注以及对标准输入/输出格式严格遵循的重要性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值