图像迁移Image Transfer
前言
本文主要介绍图像迁移,图像迁移有两个主要的研究方向,一个是分割,一个是风格迁移。本文主要介绍图像分割。其中分割又包括语义分割(同类别是同一个mask表示,比如下图第二张,车都是蓝色表示,人都是红色表示,可以理解为“车”“人”就是一种语义)、实例分割(具体到个体,车A和车B是同一语义的不同实例,所以不同实例也要用不同的mask表示,如图三,车与车之间也用不同色,人与人也不同色)、全景分割(既进行语义分割也进行实例分割,如图四)。
一、图像分割Image Segmentation
下面介绍分割领域常用的几个神经网络:
1.FCN
介绍FCN前要与注意与FC区分,FC是卷积神经网络的一个功能层,而FCN是一个卷积神经网络。
FCN的网络结构如下图所示,经过一系列卷积池化操作,得到特征图FCN-32S(经过5次pooling,FM尺寸变为原图的1/32)。随着卷积网络深度的增加,高层特征图的语义信息会越来越多,而像素级信息常包含在低层FM中会越来越少,对于分割问题,由于需要标出物体的边缘,而边缘信息往往包含在低层特征图中,所以FCN提出低层和高层特征图短接的方法来获取低层特征。
FCN主要是通过三个分支来实现不同深度的FM融合,下面分别演示不融合的高层特征图、两层融合的和三层融合的特征图的边缘信息效果:
1.高层特征图
5次pooling获得的特征图FCN-32S,包含了高层语义信息,边缘信息不佳;