高翔博士在他的《视觉SLAM十四讲》中把SLAM问题的数学描述抽象成了两个数学方程,以下对此做个总结,并且对此做一些通俗易懂的解释:
一、方程的总体形式
作为理性层次的描述,我们引入数学方程来描述SLAM过程,其中第一个方程叫做运动方程、第二个方程叫做观测方程,想象一下我们在研究SLAM的时候肯定需要观测机器人(无人汽车、无人机等都可以统称为机器人)的运动(画面感很强哈哈),这样很容易理解并且记忆这两个方程的名称和意义:
二、变量的含义
我们看到,这两个方程中有大量的英文字母作为变量存在其中,下面介绍一下各个变量的含义:
- x\textbf{x}x:加粗的x\textbf{x}x表示一个向量,这个向量表示这机器人的位置坐标,在三维坐标系中可以使用[x1,x2,x3]T[x_1,x_2,x_3]^T[x1,x2,x3]T来表示。
- yj\textbf{y}_jyj:加粗的y\textbf{y}y也表示一个向量,表示某一个路标点的位置,注意到y\textbf{y}y通常带有下标jjj,这个jjj表示路标的编号,我们假设一共有NNN个路标,则用y1,y2...yj...yN,\textbf{y}_1,\textbf{y}_2...\textbf{y}_j...\textbf{y}_N,y1