JDK1.8:HashMap 源码学习

本文是作者学习JDK1.8中HashMap源码的记录,作者初学只知方法使用,不了解实现,故记录学习过程。文中涉及HashMap的属性、Node节点、构造方法、putMapEntries()、put()、get()、resize()等方法,后续还会分享相关面试题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

JDK1.8:HashMap 源码学习

初学的时候 只知道其中的方法怎么用,并不太了解其中的实现,所以呢,写篇记录一下学习过程。

关于JDK 1.8 中的HashMap 相关面试题 会在后续新文章中分享 , 本文仅作为学习HashMap 源码记录

部分方法源码   持续更新中....... 

目录

JDK1.8:HashMap 源码学习

简单说说

属性

HshMap 中的Node节点

HashMap构造方法

构造方法中调用的 putMapEntries()

put() 方法

get() 方法

resize() 方法


简单说说

 对于JDK 1.8 中的HashMap  对比之前JDK 版本 相关的设计实现  ; 也是面试过程中的必问点,只知道方法的使用,是万万行不通的!!!!

public class HashMap<K,V> extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable {
  // 继承 AbstractMap 实现了 Map ,Cloneable , Serializable  接口
} 

属性

    /**
     * 简述为版本号
     */
 private static final long serialVersionUID = 362498820763181265L; 

    /**
     * 默认的初始化容量大小为16 
     */
 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; 

    /**
     * 最大容量
     */
 static final int MAXIMUM_CAPACITY = 1 << 30; 

    /**
     * 默认负载因子
     * 默认负载因子为0.75 是一个比较好的临界值;当负载因子过大,接近于1时,那么数组中的数据就越 
     * 多越密 ;当负载因子越小 ,接近于0时,数组中存放的数据也就是越少,越稀;简单来说 负载因子 
     * 的大小 控制着数组中数据的稀疏程度。
     * 面试题:在这里,留个问题?为什么默认负载因子是0.75???
     * 负载因子过大 会导致元素查找过程效率降低。过小,导致数组的数据越稀疏,利用率降低。
     */
 static final float DEFAULT_LOAD_FACTOR = 0.75f; 

    /**
     *  当节点数大于 TREEIFY_THRESHOLD 则会转换成红黑树
     *  JDK1.8 亮点设计在于Hashmap 中的红黑树存储  
     *  
     */
 static final int TREEIFY_THRESHOLD = 8;

    /**
     *  当节点数小于 TREEIFY_THRESHOLD 则会转换成链表
     *  
     */
 static final int UNTREEIFY_THRESHOLD = 6;

     /**
     *  bucket 进行树形化表的最小容量 
     *  如果表的容量太多,则会调整表的容量大小
     *  
     */
 static final int MIN_TREEIFY_CAPACITY = 64;
 
     /**
     *  用来存储元素的数组 长度2的幂次方
     */
 transient Node<K,V>[] table;
 
     /**
     *  保存已缓存的元素集
     */
 transient Set<Map.Entry<K,V>> entrySet;
 
     /**
     *  键值映射数(元素的个数) ,不等于数组的长度
     */
 transient int size;
  
     /**
     *  map 结构被修改的次数
     */
 transient int modCount;
   
     /**
     *  超过临界值进行扩容;临界值(容量*负载因子)thredhold = loadfactor * capacity
     *  当Size > threshold  进行扩容
     */
 int threshold;
  
     /**
     *  负载因子
     */
 final float loadFactor;

HshMap 中的Node节点

   static class Node<K,V> implements Map.Entry<K,V> {
        // hash 值
        final int hash;
        // 键、值
        final K key;
        V value;
        // 指向下一节点
        Node<K,V> next;
        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        // 重写 hashCode()
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

       // 重写 equals()
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

HashMap构造方法

  /**
    * 构造方法1 :指定 HashMap 初始化的容量大小 和 负载因子 
   **/
  public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

  /**
    * 构造方法2 :指定 Hashmap 初始化容量大小
   **/
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

  /**
    * 构造方法3 : 默认的构造方法  (用的最多的方法)
   **/
   public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

  /**
    * 构造方法4 :参数为一个Map 
   **/
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

构造方法中调用的 putMapEntries()

   final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        // 获取此时元素个数
        int s = m.size();
        if (s > 0) {
            // 如果此时数组table 为null
            if (table == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                // 如果 此时计算出t 大于临界值
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
           // 如果 此时获取map 的元素个数s > 临界值,调用resize() 方法实现扩容机制
            else if (s > threshold)
                resize();
            //  将m 中的元素 遍历调用putVal() 添加到 HashMap 中
            // putVal() 在介绍put() 方法会简述
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

put() 方法

    // 提供的是put 方法  但是底层的实现的putVal() 方法 未提供公开使用
    //  这地调用putVal() 的第一个参数:通过调用hash() 计算出键key 对象的hash 值(int)
    // 第二个 第三个 参数 将key value 传过来 
   public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }


   /**
     *  该方法的参数  
     *   hash : key 的hash 值
     *   key : key
     *   value : 需要put 的目标值
     *   onlyIfAbsent : boolean 类型 如果为true 则不能修改已存在的值
     *   evict : 如果为false 则此时的table 数组 处于创建状态
     **/
 
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
       // 用来保存原表
        Node<K,V>[] tab;
       // 用来标记 下标值为hash 的节点 
        Node<K,V> p; 
       // n 用来标记 长度
        int n, i;
       // 如果 table 没有初始化(即为null) 或者 长度为0 ,则触发扩容机制
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
      // 这里 要注意 是使用 (n - 1) & hash 来计算 目标元素放置到哪个bucket 
      // 若此时的bucket 为null 则新增节点放置该bucket 位置
      // 这里是 bucket 中不存在元素的情况
        if ((p = tab[i = (n - 1) & hash]) == null)
           // 调用此方法 就会使当前下标为hash 的节点的元素为空,就会生成一个新节点放在该位置
            tab[i] = newNode(hash, key, value, null);
      // 这里是 bucket 中存在元素的情况
        else {
            Node<K,V> e; K k;
      // 比较 节点 key 和 hash 值
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
      // 如果当前节点的hash 值 ,key 值 都相等 ,
      // 并且因为此时的onlyIfAbsent 为false ,该值先存放到e 中,该节点的value 值会被改变
                e = p;
       // 判断是否为树节点   
       // 如果为树节点 那么就使用红黑树插入
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
       // 如果为链表节点    
            else {
       // bigCount 用来计数 节点数 ,在链表末尾插入节点 ,如果节点数大于临界值 则转换成红黑树
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                     // 如果该节点e.next 为空 就新增一个节点追加其后
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
        // 插入到链表中的元素key 值如果与节点的key 值相等 执行break 
        // 遍历链表
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                   // 相当于 p = p.next 
                    p = e;
                }
            }
        // 代表此时的要插入位置 已存在节点 (key 、hash 均相等)
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
               // 新值覆盖旧值
                    e.value = value;
               // 回调 ,该方法是空方法 预留操作
                afterNodeAccess(e);
               // 返回旧值
                return oldValue;
            }
        }
       // hashmap 结构修改 则++ 
        ++modCount;
       // 如果size 实际的元素个数 大于临界值 触发扩容机制
        if (++size > threshold)
            resize();
       // 回调, 该方法是空方法 预留操作
        afterNodeInsertion(evict);
        // 最后 返回 null
        return null;
    }

get() 方法

    // get()
   public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

       // getNode()
        final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab;  // 记录表对象
        Node<K,V> first, e; // 第一个节点、当前节点
        int n;  // 表的长度
        K k;  
// tab 不为空 并且 表长度大于0,并且对应的节点存在(key 对象的hash值计算得到下标 目标位置的节 
// 点)
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
          // 当前的节点 hash key 值 都符合 ,直接返回该节点
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            // 判断当前节点后的节点 
            if ((e = first.next) != null) {
            // 从红黑树中获取
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
            // 从链表中遍历获取
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

resize() 方法

    final Node<K,V>[] resize() {
       // oldTab 标记该对象
        Node<K,V>[] oldTab = table;
        //  oldCap 为当前容量
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        // 阈值(容量*负载因子)
        int oldThr = threshold;
        // 声明新容量、新阈值
        int newCap, newThr = 0;
        // oldCap > 0 说明已经被初始化
        if (oldCap > 0) {
        // 判断是否超过了最大容量 ,超过了最大值,直接把最大值赋值为当前的阈值
        // 并且返回旧数组
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
         // 如果 没有超过最大容量
         // 新容量 = 旧容量*2 , 并且没有超过最大容量,而且大于默认初始容量 ,
         // 此时才会新阈值 = 旧阈值*2
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        // 如果oldCap <=0 ,数组未初始化 
        // oldThr >0 将旧阈值 赋值给新容量
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
         // 这里的else  代表上述条件都不满足
         // 代表着 tab为初始化,并且调用的默认构造器 
         // 将新容量 赋值为默认初始容量
         // 阈值 赋值为 负载因子*初始容量
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
          // 经过上述的分支 newCap 是一定不为Null ,但是如果为第二条件分支,那么newThr = 0
          // 在此做一个操作  若到此当前的newThr = 0 ,容量*负载因子 通过计算得出newThr 值
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
           // 计算得出的newThr 赋值给threshold
        threshold = newThr;
           
        @SuppressWarnings({"rawtypes","unchecked"})
        // 创建新数组
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        // 将原数组数据加入到新数组中
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值