扩展欧几里得 求逆元 组合数

本文深入探讨了扩展欧几里得算法的实现细节,包括最大公约数的计算、逆元的求解以及组合数的高效计算。通过具体代码示例,详细解释了如何在模意义下求解逆元,以及如何利用逆元加速组合数的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    ll res=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return res;
}

ll Inv(ll a)
{
    ll d,x,y;
    d=exgcd(a,mod,x,y);
    if(d==1)
      return (x%mod+mod)%mod;
    return -1;
} 

ll C(ll n,ll m)
{
    ll ans1=1,ans2=1;
    for(int i=n,j=1;j<=m;j++,i--)
    {
        ans1=ans1*i%mod;
        ans2=ans2*j%mod;
    }
    return (ll)(ans1*Inv(ans2)%mod);
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值