矩阵A的转置乘A是否一定正定?矩阵A的转置乘A是正定矩阵的充分必要条件

本文讨论了矩阵A的转置A^T乘以A的性质,指出A^T*A总是半正定的,且只有当A的列秩等于n时才是正定的。还说明了行满秩和列满秩矩阵相乘不一定得到满秩矩阵,以及关于半正定矩阵B-1的正定性结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先上结论:

若矩阵A∈Rm×nA\in \mathbb{R}^{m\times n}ARm×n(可以不要求AAA是方阵),则对于任意非零向量x∈Rnx\in \mathbb{R}^{n}xRn,始终有 xTATA≥0.x^{\mathsf{T}}A^{\mathsf{T}}A\ge0.xTATA0. 另外ATAA^{\mathsf{T}}AATA一定是对称的。因此ATAA^{\mathsf{T}}AATA不一定是正定矩阵,但一定是半正定矩阵。

如果 m=nm=nm=nATAA^{\mathsf{T}}AATA 是正定的当且仅当ATAA^{\mathsf{T}}AATA是可逆矩阵(满秩)。

m<nm<nm<nATAA^{\mathsf{T}}AATA一定是半正定的。

m>nm>nm>nATAA^{\mathsf{T}}AATA可能正定,可能半正定。

结论2:

ATAA^{\mathsf{T}}AATA是正定矩阵的充分必要条件是AAA满足列满秩,rank(A)=n\text{rank}(A)=nrank(A)=n

结论3:

结论3:行满秩矩阵乘以列满秩矩阵,得不到满秩矩阵。例如:[10]∗[01]T=0.[1\quad 0] ∗ [0 \quad 1] ^{\mathsf{T}} = 0.[10][01]T=0.

结论4:

结论4:如果B)−1\boldsymbol{B})^{-1}B)1是半正定,给定任意 δ>0,(δI+B)−1\delta>0, (\delta\boldsymbol{I}+\boldsymbol{B})^{-1}δ>0(δI+B)1一定存在,且是正定的, 因为δI+B\delta\boldsymbol{I}+\boldsymbol{B}δI+B是正定的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值