先上结论:
若矩阵A∈Rm×nA\in \mathbb{R}^{m\times n}A∈Rm×n(可以不要求AAA是方阵),则对于任意非零向量x∈Rnx\in \mathbb{R}^{n}x∈Rn,始终有 xTATA≥0.x^{\mathsf{T}}A^{\mathsf{T}}A\ge0.xTATA≥0. 另外ATAA^{\mathsf{T}}AATA一定是对称的。因此ATAA^{\mathsf{T}}AATA不一定是正定矩阵,但一定是半正定矩阵。
如果 m=nm=nm=n ,ATAA^{\mathsf{T}}AATA 是正定的当且仅当ATAA^{\mathsf{T}}AATA是可逆矩阵(满秩)。
当 m<nm<nm<n , ATAA^{\mathsf{T}}AATA一定是半正定的。
当 m>nm>nm>n,ATAA^{\mathsf{T}}AATA可能正定,可能半正定。
结论2:
ATAA^{\mathsf{T}}AATA是正定矩阵的充分必要条件是AAA满足列满秩,rank(A)=n\text{rank}(A)=nrank(A)=n。
结论3:
结论3:行满秩矩阵乘以列满秩矩阵,得不到满秩矩阵。例如:[10]∗[01]T=0.[1\quad 0] ∗ [0 \quad 1] ^{\mathsf{T}} = 0.[10]∗[01]T=0.
结论4:
结论4:如果B)−1\boldsymbol{B})^{-1}B)−1是半正定,给定任意 δ>0,(δI+B)−1\delta>0, (\delta\boldsymbol{I}+\boldsymbol{B})^{-1}δ>0,(δI+B)−1一定存在,且是正定的, 因为δI+B\delta\boldsymbol{I}+\boldsymbol{B}δI+B是正定的。