在上一章的独立测试中,我们的模型暴露出了一个典型的工业场景问题:“宁可错杀,不可放过”的保守策略——虽然精确度(Precision)极高,误报很少,但却付出了高漏检(低召回率 Recall)的代价。对于一个安全预警系统来说,漏检往往是更无法承受的风险。
本章,我们将直面这个挑战,开展一场针对性的模型性能优化实战。我们将深入YOLOv8的训练配置,通过一系列精细化的技术手段,着力破解“高Precision、低Recall”的困境。您将学到:
-
诊断分析:如何从评估报告中解读模型行为背后的深层原因。
-
数据增强优化:如何调整增强策略,让模型见识更多“困难样本”,提升泛化能力。
-
超参数调优:重点调整学习率、损失函数权重,引导模型更加关注对漏检的惩罚。
-
推理策略调整:如何利用置信度阈值与非极大值抑制参数,在精确与召回之间找到最佳平衡点。
-
结果对比:最终,我们将再次在测试集上验证优化效果,目标是在保持高精确度的前提下,将召回率提升10个百分点以上,显著降低漏检风险。
一、问题描述
Loading ground truth labels...
Runnin