引言

自openGauss社区联合Gauss松鼠会、墨天轮社区共同举办第八届openGauss技术文章征集活动以来,我作为openGauss的忠实用户,一直积极参与其中,分享我的使用心得和技术实践。今天,我想借此机会,与大家分享我与openGauss的故事,以及我在使用过程中的一些技术见解和实践经验。

随着大数据时代的到来,数据库性能和并发处理能力成为了企业和开发者关注的焦点。openGauss 6.0 版本引入了智能优化器,显著提升了数据库的性能和并发处理能力。本文将详细介绍如何利用 openGauss 6.0 的智能优化器进行性能调优和并发控制,帮助读者在实际应用中充分发挥数据库的潜力。

openGauss,作为一款由华为开源的关系型数据库管理系统,自诞生之日起就承载着自主可控与技术创新的重大使命。它基于PostgreSQL研发,专为OLTP场景优化,提供了面向多核架构的极致性能、全链路的业务数据安全、基于AI的调优和高效运维的能力。这些特性使得openGauss在众多开源数据库中脱颖而出,成为了我技术探索的首选目标。

一、智能优化器:性能提升的利器

openGauss的智能优化器是其性能卓越的关键所在。它采用了基于代价的优化策略(Cost-Based Optimization, CBO),能够根据查询语句的复杂度、数据分布、索引情况等多种因素,生成最优的执行计划。

1、创建表测试表

使用SQL语句中的CREATE TABLE命令可以在数据库中创建新表。以下是一个示例:
table_name:要创建的表的名称。
column1, column2, column3等:表中的列名。
datatype:每列的数据类型。
constraint:对列中的数据施加的额外规则,如非空、唯一性、主键等。
[table_constraint]:可选的表级别约束,如主键约束、外键约束等。

openGauss=# CREATE TABLE Employees (
    EmployeeID INT PRIMARY KEY,        -- 员工ID,主键
    Name VARCHAR(100) NOT NULL,        -- 姓名,非空
    Position VARCHAR(50),              -- 职位
    HireDate DATE,                     -- 入职日期
    SalaropenGauss(# openGauss(# openGauss(# openGauss(# openGauss(# y DECIMAL(10, 2),             -- 薪水
    -- 假设我们有一个表级约束,比如一个唯一约束在Name列上(尽管这通常应该在列级定义)
    CONSTRAINT UniqueName UNIQUE (Name) -- 这是一个表级约束的示例,但实际上Name的唯一性通常直接在列级定义
);openGauss(# openGauss(# openGauss(# 
NOTICE:  CREATE TABLE / PRIMARY KEY will create implicit index "employees_pkey" for table "employees"
NOTICE:  CREATE TABLE / UNIQUE will create implicit index "uniquename" for table "employees"
CREATE TABLE
openGauss=#
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.

openGauss 6.0 智能优化器与并发控制实践_linux系统

2、查看查询计划

在执行查询前,我们可以通过EXPLAIN命令查看查询的执行计划,了解优化器如何规划查询。

openGauss=# EXPLAIN SELECT * FROM Employees WHERE EmployeeID = 123;
                                    QUERY PLAN                                    
----------------------------------------------------------------------------------
 [Bypass]
 Index Scan using employees_pkey on employees  (cost=0.00..8.27 rows=1 width=364)
   Index Cond: (employeeid = 123)
(3 rows)


openGauss=#
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.

openGauss 6.0 智能优化器与并发控制实践_opengauss_02

– - 使用列名进行查询(假设您想查询员工ID为某个值的记录)

这条命令将显示查询的执行计划,包括扫描方式、索引使用情况等,帮助我们分析查询性能。
请注意,已经移除了CONSTRAINT UniqueName UNIQUE (Name),因为Name列已经在列级定义了UNIQUE约束(尽管在原始示例中这是作为表级约束给出的,但通常我们会在列级直接定义唯一性约束,除非有特殊的复合唯一性需求)。同时,在EXPLAIN语句中,我使用了EmployeeID作为查询条件,因为这是表中实际存在的列名。
执行修正后的EXPLAIN语句,并查看查询计划。

3、统计信息收集

优化器依赖统计信息来做出决策。因此,定期收集统计信息对于保持优化器的准确性至关重要。
在openGauss数据库中,ANALYZE命令用于收集表中数据的统计信息,这些信息对于查询优化器来说是至关重要的,因为它依赖于这些统计信息来选择最优的查询执行计划。

当您执行ANALYZE Employees;命令时,openGauss会扫描Employees表中的数据,并收集关于数据分布、列值频率等的统计信息。这些信息被存储在系统表中,供查询优化器在后续查询中使用。
由于ANALYZE命令通常是一个快速且非阻塞的操作(尽管它可能会锁定表的一些元数据以进行更新),因此您看到的输出非常简洁,只是简单地确认了命令的执行:

openGauss=# ANALYZE Employees;
ANALYZE
openGauss=#
  • 1.
  • 2.
  • 3.

openGauss 6.0 智能优化器与并发控制实践_opengauss_03

这表示ANALYZE命令已经成功执行,并且没有遇到任何错误。现在,查询优化器可以使用更新后的统计信息来更有效地处理针对Employees表的查询。

这条命令将收集Employees的统计信息,包括行数、列值的分布等,为优化器提供决策依据。

4、查询优化示例

假设我们有一个复杂的查询,涉及多个表的连接和过滤条件。通过调整查询语句的结构,如使用子查询、联合查询等,并结合索引的使用,我们可以显著提升查询性能。
在openGauss数据库中,查询优化通常涉及对SQL查询语句的重写或使用索引等策略,以提高查询性能。下面,我将通过一个简单的示例来展示如何对针对Employees表的查询进行优化。

4.1 原始查询命令

假设我们有一个Employees表,并且我们想要查询所有职位为"Manager"的员工姓名和薪水。原始查询命令可能如下所示:

openGauss=# 
openGauss=# SELECT Name, Salary
FROM Employees
WHERE Position = 'Manager';openGauss-# openGauss-# 
 name | salary 
------+--------
(0 rows)


openGauss=#
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.

openGauss 6.0 智能优化器与并发控制实践_postgresql_04

优化前的准备工作
在进行优化之前,我们需要确保以下几点:
统计信息是最新的:执行ANALYZE Employees;以确保Employees表的统计信息是最新的。
检查索引:查看Employees表上是否有针对Position列的索引。如果没有,则可能需要创建一个索引来提高查询性能。

4.2 创建索引(如果尚未创建)

如果Employees表上还没有针对Position列的索引,我们可以通过以下命令创建一个索引:

openGauss=# 
openGauss=# CREATE INDEX idx_position ON Employees(Position);
WARNING:  Session unused timeout.
FATAL:  terminating connection due to administrator command
could not send data to server: Broken pipe
The connection to the server was lost. Attempting reset: Succeeded.
openGauss=#
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.

openGauss 6.0 智能优化器与并发控制实践_cache_05

这个索引将帮助数据库更快地定位到Position列中值为"Manager"的行。

4.3 优化后的查询命令

在创建了索引之后,我们实际上不需要修改原始的查询命令,因为数据库查询优化器会自动利用可用的索引来优化查询。但是,从技术和实践的角度来看,我们可以说“优化后的查询”是那些能够利用索引和其他数据库特性的查询。

因此,优化后的查询命令在语法上与原始查询命令相同,但性能可能会更好,因为数据库现在可以使用索引来加速查询:

openGauss=# 
openGauss=# SELECT Name, Salary
FROM Employees
WHERE Position = 'Manager';openGauss-# openGauss-# 
 name | salary 
------+--------
(0 rows)


openGauss=#
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
4.4 验证优化效果

要验证优化效果,我们可以使用EXPLAIN命令来查看查询计划。在执行优化后的查询之前,我们可以使用以下命令来查看查询计划:

openGauss=# 
openGauss=# EXPLAIN SELECT Name, Salary FROM Employees WHERE Position = 'Manager';
                         QUERY PLAN                         
------------------------------------------------------------
 Seq Scan on employees  (cost=0.00..12.59 rows=1 width=234)
   Filter: (("position")::text = 'Manager'::text)
(2 rows)


openGauss=#
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.

openGauss 6.0 智能优化器与并发控制实践_postgresql_06

如果索引被正确使用,查询计划应该会显示索引扫描而不是全表扫描。

注意事项
索引的选择:不是所有的列都适合创建索引。索引会占用额外的存储空间,并且在插入、更新和删除操作时可能会增加额外的开销。因此,应该根据查询模式和性能需求来选择要索引的列。
统计信息的准确性:确保统计信息是准确的非常重要。过时的统计信息可能会导致查询优化器做出不佳的决策。
查询优化器的智能:现代数据库查询优化器非常智能,能够自动利用索引和其他数据库特性来优化查询。但是,了解查询优化器的工作原理和如何编写高效的SQL查询仍然是非常重要的。
综上所述,虽然在这个简单的示例中优化后的查询命令在语法上与原始查询命令相同,但通过创建索引和确保统计信息是最新的,我们可以显著提高查询性能。

通过拆分查询并使用子查询,我们可以减少不必要的数据扫描,提高查询效率。

二、并发调优:保障数据一致性与性能

在并发环境下,数据库需要处理多个事务同时访问同一数据资源的情况。openGauss通过其高效的并发控制机制,确保了数据的一致性和系统的性能。

1、事务隔离级别设置

openGauss支持多种事务隔离级别,如读未提交、读已提交、可重复读和序列化。根据业务需求,我们可以选择合适的事务隔离级别来平衡数据一致性和性能。
在openGauss数据库中,事务隔离级别是确保数据一致性和性能平衡的关键因素。openGauss支持四种标准的事务隔离级别,每种级别提供了不同程度的数据一致性和并发性。以下是对这四种隔离级别的简要说明,以及如何通过SQL语句设置特定的事务隔离级别:

2、读未提交(READ UNCOMMITTED):