布隆过滤器原理

本文详细介绍了布隆过滤器的工作原理、Java实现及其实现细节,包括位数组、多个哈希函数以及如何判断元素是否存在。通过示例代码演示了布隆过滤器的添加和查询操作,适用于缓存穿透问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


参考文章,点击这里
原博文,点击这里
作用嘛就是用来过滤非法key,避免缓存穿透,布隆过滤器用的是位数组,很节省空间,性能也相当好

先贴demo后BB

public class MyBloomFilter {
    //你的布隆过滤器容量
    private static final int DEFAULT_SIZE = 2 << 28;
    //bit数组,用来存放key
    private static BitSet bitSet = new BitSet(DEFAULT_SIZE);
    //后面hash函数会用到,用来生成不同的hash值,可随意设置,别问我为什么这么多8,图个吉利
    private static final int[] ints = {1, 6, 16, 38, 58, 68};

    //add方法,计算出key的hash值,并将对应下标置为true
    public void add(Object key) {
        Arrays.stream(ints).forEach(i -> bitSet.set(hash(key, i)));
    }

    //判断key是否存在,true不一定说明key存在,但是false一定说明不存在
    public boolean isContain(Object key) {
         boolean result = true;
        for (int i : ints) {
        	//短路与,只要有一个bit位为false,则返回false
            result = result && bitSet.get(hash(key, i));
        }
        return result;
    }

    //hash函数,借鉴了hashmap的扰动算法,强烈建议大家把这个hash算法看懂,这个设计真的牛皮加闪电
    private int hash(Object key, int i) {
        int h;
        return key == null ? 0 : (i * (DEFAULT_SIZE - 1) & ((h = key.hashCode()) ^ (h >>> 16)));
    }
}

测试

    public static void main(String[] args) {
        MyNewBloomFilter myNewBloomFilter = new MyNewBloomFilter();
        myNewBloomFilter.add("张学友");
        myNewBloomFilter.add("郭德纲");
        myNewBloomFilter.add("蔡徐鸡");
        myNewBloomFilter.add(666);
        System.out.println(myNewBloomFilter.isContain("张学友"));//true
        System.out.println(myNewBloomFilter.isContain("张学友 "));//false
        System.out.println(myNewBloomFilter.isContain("张学友1"));//false
        System.out.println(myNewBloomFilter.isContain("郭德纲"));//true
        System.out.println(myNewBloomFilter.isContain("蔡徐老母鸡"));//false
        System.out.println(myNewBloomFilter.isContain(666));//true
        System.out.println(myNewBloomFilter.isContain(888));//false
    }

原理

通过对比hash算法计算出来的下标,注意,我们是对比一组,而不是只看一次,一次hash结果对应一个下标

把同一个key进行多次hash运算,将hash出来的下标放入数组,数组默认全为0,放入元素后该下标就为1,后面判断是否存在元素的时候也是进行同样次数的hash运算,看下结果对应的所有下标是否全为1,若全为1,则代表该key可能存在,若存在不为1的,则说明该key一定不存在;

默认位数组:[0,0,0,0,0,0]
比方说有个已知key的下标是0,2,5
对应位数组:[1,0,1,0,0,1]
判断某个未知key存不存在的时候,假设我们计算出来的下标是0,2,4
对应位数组:[1,0,1,0,1,0]
此时位数组内5对应下标值为0,而已知key位数组的5对应下标位1,说明这两个一定不是同一个key

相反,如果某个key计算出来的下标为[1,0,1,0,0,1],只能说这个key可能存在,因为这个位置可能是其它key计算出来的

如果对上面的hash算法有疑惑,请移步 帮你真正理解hashCode和hash算法

demo复制可用,家里有条件的都在编译器上跑一跑,测一测

ok我话讲完

嘤嘤嘤~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值