自己整理了一下Non-Local注意力机制提出后,后续该注意力机制的变体和在其他领域的应用!由于自己看论文数量有限,欢迎大家补充说明!
一、语义分割:\color{#FF3030}{一、语义分割:}一、语义分割:
1.CCnet-Criss-Cross Attention for Semantic Segmentation
原Non-Local block操作的计算复杂度为O(HW * HW),本文将Non-Local分解为两个Criss-Cross attention block,相当于只在水平和竖直方向的像素点学习权重值,但是其他像素点的权重对特征提取也有作用,所以采用了递归的方式,计算复杂度降为了O(2 * HW * (H+W-1)),大大节省了内存和显存。且效果比Non-local更好。
实验结果:
2.DAnet:Dual Attention Network for Scene Segmentation
目前基于深度学习的语义分割网络