[注意力机制]--Non-Local注意力的变体及应用

自己整理了一下Non-Local注意力机制提出后,后续该注意力机制的变体和在其他领域的应用!由于自己看论文数量有限,欢迎大家补充说明!

一、语义分割:\color{#FF3030}{一、语义分割:}

1.CCnet-Criss-Cross Attention for Semantic Segmentation
在这里插入图片描述
原Non-Local block操作的计算复杂度为O(HW * HW),本文将Non-Local分解为两个Criss-Cross attention block,相当于只在水平和竖直方向的像素点学习权重值,但是其他像素点的权重对特征提取也有作用,所以采用了递归的方式,计算复杂度降为了O(2 * HW * (H+W-1)),大大节省了内存和显存。且效果比Non-local更好。
在这里插入图片描述
实验结果:
在这里插入图片描述

2.DAnet:Dual Attention Network for Scene Segmentation
在这里插入图片描述
目前基于深度学习的语义分割网络

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值