蓝桥杯第五届java b组_第五届蓝桥杯JavaB组第五题

本文探讨了如何使用勾股定理来找出所有满足特定条件的直角三角形,即斜边为指定整数时,其余两边也为整数的所有组合。通过编程实现,展示了具体的算法思路与实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形。

已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。

求满足这个条件的不同直角三角形的个数。

【数据格式】

输入一个整数 n (0

要求输出一个整数,表示满足条件的直角三角形个数。

例如,输入:

5

程序应该输出:

1

再例如,输入:

100

程序应该输出:

2

再例如,输入:

3

程序应该输出:

0

资源约定:

峰值内存消耗(含虚拟机) < 256M

CPU消耗  < 1000ms

首先满足三角形的条件要知道,a的平方+b的平方 = c的平方,然后两边之和大于第三边,

可以用for循环遍历,不过一定要保证a的平方+b的平方 = c的平方,还要避免重复,比如5 答案是1.     其他两边是3,4,要防止4,3的情况

代码如下:

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

int n = sc.nextInt();

int n2 = (int) Math.pow(n, 2);

int code = 0;

for (int i = 1; i < n; i++) {

int t = (int) Math.pow(i, 2);//i的平方

int s = (int)Math.sqrt(n2-t);//第三条边

if(i>s) break;//防止出现重复

if(n2==Math.pow(s,2)+t){//判断是否满足a的平方+b的平方 = c的平方(i是a,s是b,n是c)

if(s+i>n){//两边之和大于第三边,因为斜边最大 另外两组s+n>i和i+n>s一定满足,不需判断

code++;

}

}

}

System.out.println(code);

} 欢迎指正~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值