题目
勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形。
已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数。
求满足这个条件的不同直角三角形的个数。
【数据格式】
输入一个整数 n (0
要求输出一个整数,表示满足条件的直角三角形个数。
例如,输入:
5
程序应该输出:
1
再例如,输入:
100
程序应该输出:
2
再例如,输入:
3
程序应该输出:
0
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
首先满足三角形的条件要知道,a的平方+b的平方 = c的平方,然后两边之和大于第三边,
可以用for循环遍历,不过一定要保证a的平方+b的平方 = c的平方,还要避免重复,比如5 答案是1. 其他两边是3,4,要防止4,3的情况
代码如下:
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int n2 = (int) Math.pow(n, 2);
int code = 0;
for (int i = 1; i < n; i++) {
int t = (int) Math.pow(i, 2);//i的平方
int s = (int)Math.sqrt(n2-t);//第三条边
if(i>s) break;//防止出现重复
if(n2==Math.pow(s,2)+t){//判断是否满足a的平方+b的平方 = c的平方(i是a,s是b,n是c)
if(s+i>n){//两边之和大于第三边,因为斜边最大 另外两组s+n>i和i+n>s一定满足,不需判断
code++;
}
}
}
System.out.println(code);
} 欢迎指正~