前言
1.本文重点是R-FCN要解决的问题以及它是如何解决的,尽量用较少篇幅表达清楚论文算法,其他一些不影响理解算法的东西不做赘述
2.博客主要是学习记录,为了更好理解和方便以后查看,当然如果能为别人提供帮助就更好了,如果有不对的地方请指正(论文中的链接是我经过大量搜索,个人认为讲解最清楚的参考)
创新点
1.使用全卷积网络实现共享计算
2.利用Position-Sensitive ROI Pooling处理位移不变性
为何提出R-FCN
(Faster R-CNN到R-FCN)
1.两种Faster R-CNN
1)base部分是VGG,head部分是全连接层
2)base部分是ResNet,head部分是卷积层(conv5)
注:
1)base就是基础主干网络,用来提取特征,共享计算
2)head就是后面不能共享计算的部分(生成的ROI每一个经过head部分,无法共享计算就会计算几百次,是导致Faster R-CNN速度慢的原因之一)
2.由于无法共享计算,所以尝试把ROI放到conv5后面,这样前面卷积都能共享计算,但是因为ROI放在Conv5后面的特征图上,由于网络太深了,原图的位置变化很难反映到特征图上,即对平移可变性产生影响
注:
1)平移不变性(translation invariance)是对应分类的,就是说无论输入图片中的物