异常检测 and 自编码器(2)

本文介绍了自编码器在异常检测中的关键应用,包括NASA数据实例、时间序列处理和心电图检测,同时推荐了几个学习网址供读者深入研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

  上篇文章介绍了自编码器的原理和作用等知识,以及在异常检测中的作用。同时学习到一句话:自编码器(Auto Encoder)也是一种无监督的数据压缩算法,或者说特征提取算法。所以,其可以用来做异常检测。最近一直在思考第二节要讲些什么,在网上搜寻了一下,发现有的博主讲解了自编码器用于异常检测的代码实现,分析的也很不错,所以在这节给大家推荐一些网址,希望大家有兴趣的可以进行一些学习~


一、自编码器用于异常检测的网址推荐

  自编码器在用于异常检测时,常常是和其他方法一起搭配使用的,比如无监督学习等等。自编码器既可以作为处理数据的手段,如前文中说的消除工况波动引起的数据分布变化,也可以利用其机器学习的方法学习编码规律从而判断数据异常。接下来进行一些学习网站的分享~

1、自编码器AutoEncoder解决异常检测问题

  网址:自编码器AutoEncoder解决异常检测问题

  数据集:NASA声学和振动数据库

  判断异常原理:自编码器学习到了“正常数据”的编码格式,所以当一个数据集提供给该自编码器时,它会按照“正常数据”的编码格式去编码和解码。如果解码后的数据集和输入数据集的误差在一定范围内,则表明输入的数据集是“正常的”,否则是“异常的"。

  补充:该网址内嵌自编码器AutoEncoder解决异常检测问题(手把手写代码),很详细。此部分也可以参考网址:自编码器AutoEncoder解决异常检测问题(手把手写代码)

2、基于自编码器的时间序列异常检测算法

  网址:基于自编码器的时间序列异常检测算法

  此文从自编码器的基础内容出发,在时间序列的业务场景下,逐步展开基于自编码器的时间序列表示方法,并且最终讲解了如何应用与时间序列异常检测上。

3、深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列

  网址:深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列

  原文链接:PYTHON深度学习实现自编码器AUTOENCODER神经网络异常检测心电图ECG时间序列

  通过训练具有小型中心层的多层神经网络重构高维输入向量,可以将高维数据转换为低维代码。这种神经网络被命名为自编码器_Autoencoder_

  通过本教程,可以学习如何使用自编码器快速检测时间序列异常。


总结

  以上就是分享的所有内容,大家如果有好的推荐网址可以进行评论分享~

### 使用 PyTorch 实现异常检测自动编码器 #### 构建 LSTM 自动编码器模型 为了构建用于异常检测的LSTM自动编码器,在定义网络结构时,通常会创建两个主要部分:编码器和解码器。编码器负责压缩输入数据到较低维度的空间表示;而解码器则尝试从未压缩的数据重构原始输入。 ```python import torch from torch import nn, optim class LSTMAutoEncoder(nn.Module): def __init__(self, input_size=140, hidden_size=64, num_layers=2): super(LSTMAutoEncoder, self).__init__() # 编码器层 self.encoder = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) # 解码器层 self.decoder = nn.LSTM(input_size=hidden_size, hidden_size=input_size, num_layers=num_layers, batch_first=True) def forward(self, x): encoded, _ = self.encoder(x) decoded, _ = self.decoder(encoded) return decoded ``` 此代码片段展示了如何利用 `nn.LSTM` 来搭建一个简单的双向循环神经网络架构作为基础框架[^1]。 #### 训练过程与参数调整 当准备好了模型之后,下一步就是编写训练逻辑。这涉及到设置损失函数(通常是均方误差MSE),优化算法的选择(比如Adam),以及迭代更新权重的过程: ```python model = LSTMAutoEncoder().to(device) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=0.001) for epoch in range(num_epochs): for data in dataloader: inputs = data.to(device) outputs = model(inputs) loss = criterion(outputs, inputs) optimizer.zero_grad() loss.backward() optimizer.step() print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}') ``` 这段脚本说明了怎样通过反向传播最小化预测输出同实际输入间的差异来进行有效的监督学习。 #### 可视化重建效果并评估性能 完成训练后,可以通过对比原信号及其经过自编码处理后的版本来直观感受系统的运作情况。同时计算两者之间的差距——即所谓的“重建误差”,以此判断是否存在潜在的心跳异常现象: ```python encoded_data = model.encoder(normal_test_data).detach().cpu().numpy() decoded_data = model.decoder(torch.tensor(encoded_data)).detach().cpu().numpy() plt.figure(figsize=(8, 6)) plt.plot(normal_test_data[0], 'b') plt.plot(decoded_data[0], 'r') plt.fill_between(np.arange(len(normal_test_data[0])), decoded_data[0], normal_test_data[0], color='lightcoral', alpha=.5) plt.title('ECG Signal Reconstruction and Error Visualization') plt.xlabel('Time Steps') plt.ylabel('Amplitude') plt.legend(['Original', 'Reconstructed', 'Error']) plt.show() ``` 上述绘图命令能够帮助观察者理解正常样本被正确恢复的程度,并识别那些偏离预期模式过多的情况,从而标记为可能存在的异常事件[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值