SSD 网络结构分析与默认框设计

SSD模型采用default boxes与不同分辨率的特征图结合,预测相对偏移量而非边界框坐标。它使用VGG16作为特征提取网络,并在特定层设置不同尺度和宽高比的default box。每层预测包括类别得分和偏移量,通过NMS等方法输出检测结果。设计default box尺寸基于比例s_min和s_max,以及多种宽高比。在不同特征图层设置不同数量的default box,SSD总共预测8732个框。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

图1 SSD300 模型结构图

Default boxes and aspect ratios We associate a set of default bounding boxes with each feature map cell, for multiple feature maps at the top of the network. The default boxes tile the feature map in a convolutional manner, so that the position of each box relative to its corresponding cell is fixed. At each feature map cell(特征图上叫cell), we predict the offsets relative to the default box shapes in the cell, as well as the per-class scores that indicate the presence of a class instance in each of those boxes. Specifically, for each box out of k at a given location, we compute c class scores and the 4 offsets relative to the original default box shape. This results in a total of (c+4)k(c + 4)k(c+4)k filters that are applied around each location in the feature map, yielding (c+4)kmn(c + 4)kmn(c+4)kmn outputs for a m × n feature map.
For an illustration of default boxes, please refer to Fig. 1. Our default boxes are similar to the anchor boxes used in Faster R-CNN [2], however we apply them to several feature maps of different resolutions. Allowing different default box shapes in several feature maps let us efficiently discretize the space of possible output box shapes.

SSD模型并不是用边界框的中心位置坐标和宽高参与运算,而是用bounding box相对于default box的偏移量来进行运算。

anchor 是先验框,是固定的,网络学习的是相对于先验框的偏移量(offset)。

假设default box 的位置表示为 d=(dcx,dcy,dw,dh)d=(d_{cx}, d_{cy}, d_{w}, d_{h})d=(dcx,dcy,dw,dh), 对应的 bounding box 表示为 b=(bcx,bcy,bw,bh)b=(b_{cx}, b_{cy}, b_w, b_h)b=(bcx,bcy,bw,bh) 其中cx,cycx, cycx,cy为中心位置坐标,w,hw, hw,h为框的宽和高,则模型预测bounding box 的输出可以表示为t:
tx=(bcx−dcx)/dwt_x=(b_{cx}-d_{cx})/d_wtx=(bcxdcx)/dw ty=(bcy−dcy)/dht_y=(b_{cy}-d_{cy})/d_hty=(bcydcy)/dh tw=ln(bw/dw)t_w=ln(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gallant Hu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值