SPSS作为老牌强大数据分析软件,对于笔者这样的小白而言,非常易用,10秒完成一个one-way anova不成问题,唯手熟尔。当因为某些原因不得不用R语言做anova分析时,却碰到诸多问题,通过层层搜索和整理,最终还是完成了与SPSS输出完全一致的R代码,仅供参考。本文主要关注三种最简单的方差分析:one-way anova(单因素方差分析),two-way anova(二因素方差分析)和repeated anova(重复测量方差分析),分别使用SPSS和R语言进行分析对比。
1 one-way anova(单因素方差分析)
数据集:不同种类的饲料对小鼠似乎有不同的增肥效果,如果仅考虑体重,哪一种最好?自变量为饲料种类,因变量为小鼠体重。
SPSS分析过程:
选择[Analyze]-[Compare Means]-[One-Way ANOVA]
将fodder变量放入Factor,weight变量放入Dependent List
在[Post Hoc]选项中勾选Tukey进行事后检验
在[Options]中勾选Descriptive,Homogeneity of variance test,和Means plot
点击[OK]输出结果:方差同质性检验结果不显著表明满足方差同质性前提
在one-way anova的输出结果中,F(3, 15) = 157.467,p < .001,表明吃不同饲料的老鼠的体重的确有差异,那么到底吃哪一种饲料增肥效果最好呢?接下来看事后检验的结果: