Graph embedding之Deepwalk算法原理,实现和应用

本文介绍了图神经网络中的DeepWalk算法,它利用随机游走模拟节点之间的共现关系,通过skip-gram模型学习节点的低维向量表示,适用于节点分类、链接预测等任务。DeepWalk将图嵌入技术应用于推荐系统,特别是在召回阶段展现高效性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图网络现在非常的流行,应用场景也十分的广泛,在推荐领域应用也十分广泛,在召回阶段graph-embedding是很有效的一种方式。以下内容参考浅梦大神的笔记

图神经网络

主要包括Graph Embedding(基于随机游走)和Graph CNN(基于邻居汇聚)两部分。这里先看下Graph Embedding的相关内容。Graph Embedding技术将图中的节点以低维稠密向量的形式进行表达,要求在原始图中相似(不同的方法对相似的定义不同)的节点其在低维表达空间也接近。得到的表达向量可以用来进行下游任务,如节点分类,链接预测,可视化或重构原始图等。

DeepWalk 算法原理

虽然DeepWalk是KDD 2014的工作,但却是我们了解Graph Embedding无法绕过的一个方法。

我们都知道在NLP任务中,word2vec是一种常用的word embedding方法,word2vec通过语料库中的句子序列来描述词与词的共现关系,进而学习到词语的向量表示。

DeepWalk的思想类似word2vec,使用图中节点与节点的共现关系来学习节点的向量表示。那么关键的问题就是如何来描述节点与节点的共现关系,DeepWalk给出的方法是使用随机游走(RandomWalk)的方式在图中进行节点采样。

RandomWalk是一种可重复访问已访问节点的深度优先遍历算法。给定当前访问起始节点,从其邻居中随机采样节点作为下一个访问节点,重复此过程,直到访问序列长度满足预设条件。

获取足够数量的节点访问序列后,使用skip-gram model 进行向量学习。

在这里插入图片描述

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值