spss选择主要特征_SPSS中的Variable数据变量类型介绍——「杏花开生物医药统计」...

本文介绍了SPSS中的变量类型,包括定性变量(无序与有序)和定量变量(离散与连续),并详细阐述了统计学中的四种测量尺度:定类尺度、顺序尺度、间隔尺度和比例尺度,帮助理解如何在SPSS中定义和分析数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

变量的概念:变量也就是就是一种可以进行测量的数据条目(data item),对于定义变量在统计里非常重要,特别是在进行SPSS分析的时候,需要明确定义一个变量的性质。打开SPSS软件时,数据录入界面上面就显示的全部是变量,如图部分就是变量:

41a3526727f3884077cbcbcf15025018.png

1. 变量的分类

有些变量是一些数值,可以计算或者测量出来,这些变量是量化的定量变量(或数值变量,quantitative or numeric variable)。还有一些如性别、血型、出生地等进行分类的定性的变量(或分类变量/属性变量,qualitative, categorical or attribute variable),比如男和女,ABO型、城市农村等等。

①定性变量

在定性变量中,如:性别、血型、民族这种类型的变量的信息之间没有等级区分,不能说性别男大于女,也不能给种族拍个先后顺序,因此这些变量是无序的,只作为分类,给不同类别定义一个名称,这类变量称为无序变量(unordered-qualitative variable)。无序变量是没有顺序、没有等级划分,但是能够被分类(classified)和计数(counted)的一种变量。

与无序变量相对的就是有序变量(ordered-qualitative bariable),这类变量可以进行等级划分,进行排序比较,比如病情严重的程度可以分为高中低,治疗效果分为好中差。这也是定性变量的一个性质。

②定量变量

在定量变量中,有些是离散的不能够连续的,称为离散变量(或非连续性变量,discrete or uncontinuous variable),这类型的变量只能取到的是某些特定的值,他们之间存在着一些“间隔/间隙”。比如,旅游的日程只有4天、5天、7天等,而有些是连续变量(continuous variable),是在给定的范围内,可以取到任何的数值的变量,离散变量中,不能说旅游的日程是4.135天,通常要么4天要么5天,而比如体重、身高等在一个范围内就可以取任意值,比如1.75m,1.76m,或者1.752m,根据需求可以保留任意小数位的变量。

2. 变量的测量尺度

测量尺度又可以分开理解测量和尺度,测量就是将数分配给一个对象(object)或者事件(event)的特征(characteristic),使其与其他对象或特征进行比较。也就是用数值对事物或其特征进行比较。尺度(scale)就是为了测量而建立的准则。统计中常用测量尺度分为以下四个:

①定类尺度/明目尺度

定类尺度是对事物进行分类的一种尺度,赋予定类尺度的数值只是为了区分种类,没有顺序大小而言,SPSS中可以将性别分为1=男,2=女,虽然1<2,但不说明男

②顺序尺度/等级尺度

顺序尺度是给事物区分等级的一种尺度,是一种分类。比如病情的严重程度分为轻中重,药物的疗效分为一般、较好、很好等等。这些分类之间有着明显的等级关系,或者说是排序关系,但他们之间也不能加减计算。

③间隔尺度

是指事物的数值之间具有一定的间隔,这个间隔是等距的,因此也被成为是等距尺度。比如温度(非温度差)、时间(非小时),这些的数据是连续的,同时没有实际意义的0。因为0°并不代表没有温度,00:00也不代表是不存在时间。间隔尺度的对象有顺序、可以进行比较,也就是具有定类尺度和顺序尺度的所有特点。这类尺度研究的事物只能对其间隔进行计算,也就是说只可进行加减计算,却不能进行乘除计算,比如1点*2点并没有什么意义,2018年/2017年也没有任何意义。

④比例尺度/定比尺度

这类数据,连续的,同时存在类别、顺序、可以比较大小、有差异、可以相加、可以计算比例、也可以相乘,而且0点具有实际的意义,比如收入(income),0就代表没有任何收入,且数值可以任意计算。

3.SPSS中的变量

SPSS分析软件中,如下图所示,“类型”列是选择变量类型(Variable Type)的地方,右面“测量”列选的是测量尺度(Measure scale)的地方,因为SPSS一般是对数值进行处理,因此一般变量的类型(Type)会选择“数字”

ca8598dd85082da443fba2642266135c.png

数据->定义变量属性里就可以进行更详细的编辑,同时能够更具体看到SPSS中是如何定义尺度的。

4d01250b07517e8188b1fb7ca27bfdf4.png

最后我们小结一下,这四种数据依次为:无序分类变量(nominal) 、有序分类变量(ordinal)、 离散型数值变量(discrete)、连续型数值变量(continuous),用一张图来表示如下:

56a0e3f96de17f8ec7117c35fd0d7b27.png

本期课程就到这里哦,感谢大家耐心观看!每日更新,敬请关注!

【杏花开生物医药统计】微信公众号(xhkdata)

7e7dd6cac8f5237e64f461b0c5e8a241.gif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值